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Abstract
First, we review the basic mathematical structures and results concerning
the gauge orbit space stratification. This includes general properties of the
gauge group action, fibre bundle structures induced by this action, basic
properties of the stratification and the natural Riemannian structures of the
strata. In the second part, we study the stratification for theories with gauge
group SU(n) in spacetime dimension 4. We develop a general method for
determining the orbit types and their partial ordering, based on the 1–1
correspondence between orbit types and holonomy-induced Howe subbundles
of the underlying principal SU(n)-bundle. We show that the orbit types are
classified by certain cohomology elements of spacetime satisfying two relations
and that the partial ordering is characterized by a system of algebraic equations.
Moreover, operations for generating direct successors and direct predecessors
are formulated, which allow one to construct the set of orbit types, starting from
the principal type. Finally, we discuss an application to nodal configurations
in Yang–Mills–Chern–Simons theory.

PACS numbers: 11.15.−q, 02.20.−a, 02.40.−k, 11.10.−z

1. Introduction

One of the basic principles of modern theoretical physics is the principle of local gauge
invariance. Its application to the theory of particle interactions gave rise to the standard
model, which proved to be a success from both theoretical and phenomenological points of
view. The most impressive results of the model were obtained within the perturbation theory,
which works well for high energy processes. On the other hand, the low energy hadron
physics, in particular, the quark confinement, turns out to be dominated by nonperturbative
effects, for which there is no rigorous theoretical explanation yet. To study them, a variety
of different concepts and mathematical methods has been developed. In particular, for some
aspects methods of differential geometry and algebraic topology seem to be unavoidable.
This is certainly true if one wants to investigate the structure of the configuration space of
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a gauge theory—the space of gauge group orbits. In general, this space possesses not only
orbits of the so-called principal type, but also orbits of other types, which may give rise to
singularities. This stratified structure of the gauge orbit space is believed to be of importance
for both classical and quantum properties of non-Abelian gauge theories in the nonperturbative
approach. Let us discuss some aspects indicating its physical relevance.

First, studying the geometry and topology of the generic (principal) stratum, one gets
an intrinsic topological interpretation of the Gribov-ambiguity [40, 70]. We stress that the
problem of finding all Gribov copies has been discussed within specific models, see, e.g.,
[57]. For a detailed analysis in the case of two-dimensional cylindrical spacetime (including
the Hamiltonian path integral) we refer to [69]. Investigating the topology of the determinant
line bundle over the generic stratum, one gets an understanding of anomalies in terms of the
family index theorem [3, 8], see also [22] for the Hamiltonian approach. In particular, one
gets anomalies of purely topological type [78], which cannot be seen by perturbative quantum
field theory. Moreover, there are partial results and conjectures concerning the relevance
of nongeneric strata. First, generally speaking, nongeneric gauge orbits affect the classical
motion on the orbit space due to boundary conditions and, in this way, may produce nontrivial
contributions to the path integral. They may lead to localization of certain quantum states, as
was suggested by finite-dimensional examples [29]. Further, the gauge field configurations
belonging to nongeneric orbits can possess a magnetic charge, i.e. they can be considered as a
kind of magnetic monopole configuration. Following t’Hooft [74], these could be responsible
for quark confinement. The role of these configurations was investigated within the framework
of Schrödinger quantum mechanics on the gauge orbit space of topological Chern–Simons
theory in [4], see also [5] for an approach to four-dimensional Yang–Mills theories with
θ -term. Within t’Hooft’s concept, the idea of Abelian projection is of special importance and
has been discussed by many authors. Recently, this concept was studied within the setting
of quantum field theory at finite temperature on the 4-torus [35, 36]. There, a hierarchy of
defects, which should be related to the gauge orbit space structure, was discovered. Finally,
let us also mention that the existence of additional anomalies corresponding to non-generic
strata was suggested, see [44].

Most of the problems mentioned here are still awaiting a systematic investigation. For
that purpose, a deeper insight into the structure of the gauge orbit space is necessary. In a
series of papers [65–67] we have made a new step in this direction. We have given a complete
solution to the problem of determining the strata that are present in the gauge orbit space for
SU(n) gauge theories in compact Euclidean spacetime of dimension d = 2, 3, 4. Our analysis
is based on the results of Kondracki and Rogulski [54], where the general structure of the full
gauge orbit space was investigated for the first time in detail. In particular, it was shown that
the gauge orbit space is a stratified topological space. Moreover, these authors found the basic
relation between orbit types and certain bundle reductions, which we are using. We note that
this relation was also observed in [43].

We mention that there is an approach based upon parametrizing the full gauge orbit space
by a so-called fundamental domain, characterized by the fact that, up to identifications on
the boundary, it is intersected by every gauge orbit exactly once, see [26, 38, 76, 77, 79] and
references therein. However, for the study of the stratified structure of the gauge orbit space,
this concept seems not to be efficient.

Finally, we note that the stratification structure for gauge theories within the Ashtekar
approach has also been clarified, see [33].

This review is organized as follows. In the first part, the basic mathematical structures and
results concerning the gauge orbit space stratification are discussed. In section 2, we briefly
recall the setup and sketch the basic properties of the gauge group action, including a slice
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theorem and an approximation theorem. In section 3, the fibre bundle structures induced by
this action are investigated. Next, in section 4, basic properties of the stratification are derived
and, in section 5, the natural Riemannian structures of the strata are discussed. This concludes
the general part of the review. In the remaining part, we specify the gauge group to be SU(n)
and spacetime to be of dimension less than or equal to 4. Under these assumptions, the strata
can be classified by characteristic classes of certain reductions of the principal bundle the
theory is defined on. This will be explained in section 6. In section 7, we show how the
natural partial ordering of strata, which contains information on how the strata are linked, can
be read off from algebraic relations between the characteristic classes. Finally, we discuss
the case of gauge group SU(2) for some 4-manifolds in detail and present an application to
nodal configurations in topological Chern–Simons theory. For the convenience of the reader,
we have added two appendices on aspects of bundle theory and algebraic topology used in the
text, as well as an appendix in which we explain how to construct the Postnikov towers of the
classifying spaces relevant for the classification of orbit types.

2. Basics

2.1. Setup

In what follows, we assume that the reader is familiar with the standard formulation of gauge
theories in terms of fibre bundles and connections [25, 28, 75]. Thus, let M be a compact
connected orientable Riemannian manifold, let G be a compact connected linear Lie group
with Lie algebra g and let P be a smooth locally trivial principal G-bundle over M. In physical
terms, M is a model of spacetime and G is the gauge group.

For any vector bundle E, let Wk(E) denote the Hilbert space of cross sections of E
of Sobolev class k. For generalities on such spaces, see [61]; for the application of these
techniques to gauge theories, see [58]. Let C denote the subspace of Wk(T∗P ⊗ g) of
connection forms on P of Sobolev class k and let G denote the closure of the group of smooth
G-space morphisms P → G inWk+1(P, gl(n,C)). Here n is chosen so thatG ⊆ gl(n,C). In
physics, elements A of C represent gauge potentials, whereas elements g of G represent local
gauge transformations, acting by

A(g) = Ad(g−1)A + g−1 dg. (1)

The space C is an affine separable Hilbert space with translational vector space

T = Wk(T∗M ⊗ AdP)

where AdP denotes the associated bundle P ×Gg. Throughout the review, we will assume
k > dim(M)/2 + 1. Then the Sobolev lemma ensures that multiplication of a Wk+1-function
by a Wl-function, dim(M)/2 < l � k, yields a Wl-function. It follows that G is a group,
acting via (1) on C. In fact, one can prove that G is a Hilbert–Lie group with Lie algebra

LG = Wk+1(AdP)

and exponential mapping

expG(ξ)(p) = expG(ξ(p)) ∀ξ ∈ LG p ∈ P (2)

and that the action is smooth [59, 60, 70].
It should be noted that for both T and LG, identification of sections in associated bundles

with the corresponding G-equivariant horizontal forms on P is understood. We will stick to
this identification throughout the review. Also note that the elements of C and G are C1 and
C2, respectively. In particular, G may be viewed as consisting of vertical automorphisms of P
of class C2 or of sections of class C2 in the associated fibre bundle P ×G G [32].
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The gauge orbit space is

M := C/G

which is, at this stage, just a topological quotient. It will be equipped with additional
structure later. Note that M is the space of classes of gauge equivalent potentials—the ‘true’
configuration space.

The scalar products on the Hilbert spaces LG and T , respectively, are not intrinsic. Their
only purpose is to define the topology. The geometry of these spaces is defined by L2-scalar
products, induced from the Riemannian metric on M and an Ad(G)-invariant scalar product
〈·, ·〉 on g as follows:

(ξ, η)0 :=
∫
M

〈ξ, ∗η〉 ξ, η ∈ LG (X, Y )0 :=
∫
M

〈X ∧ ∗Y 〉 X,Y ∈ T

respectively. Here ∗ denotes the Hodge duality operator. Both of these scalar products are
invariant under the adjoint action of G.

Since C is affine with translational vector space T , we have

TC = C × T . (3)

In particular, any smooth assignment of a scalar product in T to the elements of C defines a
Riemannian metric on C. Examples are:

(i) The constant assignment A 
→ (·, ·)0 defines the natural (weak) L2-metric γ 0. It is
invariant under the induced action of G on T , given by

X(g) = Ad(g−1)X.

(ii) The assignment A 
→ γ kA, induced from

γ kA(X, Y ) :=
k∑
l=0

(
[∇̃A]lX, [∇̃A]lY

)
0 X,Y ∈ C∞(T∗M ⊗ AdP) (4)

by prolongation to T , defines a natural metric γ k. Here

∇̃A : C∞(T∗M⊗l ⊗ AdP) → C∞ (T∗M⊗(l+1) ⊗ AdP
)

α 
→ ∇LCα + [A,α]

where ∇LC is the Levi-Civita connection of the Riemannian metric on M and

[A,α](X0,X1, . . . , Xl) = [A(X0), α(X1, . . . , Xl)].

The norm on T defined by the scalar products γ kA,A ∈ C, is equivalent to the Wk-norm
[27]. Therefore, γ k is a strong metric. Moreover, due to(∇̃A(g)

)l = Ad(g−1)(∇̃A)
l Ad(g)

it is G-invariant, γ k
A(g)
(X(g), Y (g)) = γ kA(X, Y ).

(iii) Let us remark that one can construct further G-invariant metrics using the Laplacian
�A = ∇∗

A∇A + ∇A∇∗
A as

ηkA(X, Y ) = ((1 + �A)
k/2X, (1 + �A)

k/2Y
)

0 (5)

where (1 + �A)
k/2 is defined via functional calculus. For some specific examples, like the

principal SU(2)-bundle of second Chern class (‘instanton number’) c2 = 1 over CP2, the
restriction of η2 to the moduli space of irreducible self-dual connections was studied in
detail, see [42] and references therein. We do not comment on this here.
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Next, for A ∈ C, consider the operator of covariant derivative w.r.t. A,

∇A : Wk+1(AdP) → Wk(T∗M ⊗ AdP).

Its formal adjoint w.r.t. the L2-scalar product is the bounded linear operator

∇∗
A : Wk(T∗M ⊗ AdP) → Wk−1(AdP)

defined by

(∇Aξ,X)0 = (ξ,∇∗
AX)0 ∀ξ ∈ C∞(AdP) X ∈ C∞(T∗M ⊗ AdP).

Composition then yields a bounded linear operator

�A = ∇∗
A∇A : Wk+1(AdP) → Wk−1(AdP).

In the following, instead ofWl(AdP) orWl(T∗M ⊗ AdP) we shall often writeWl , because
the bundle in which the sections are taken can be read off unambiguously from the operators
under consideration. Moreover, the pure symbols ∇A,∇∗

A,�A always stand for the maps
∇A|Wk+1,∇∗

A|Wk and �A|Wk+1 with k fixed, whereas, for example, ∇A|Wl+1 means that ∇A
is viewed as an operatorWl+1 → Wl (where dim(M)/2 < l � k).

Note that the maps

C → B(Wk+1,Wk) A 
→ ∇A C → B(Wk,Wk−1) A 
→ ∇∗
A

are continuous linear. Hence, the map

C → B(Wk+1,Wk−1) A 
→ �A

is continuous. Since it factorizes into continuous linear maps and composition of operators, it
is even smooth. Moreover, we note the following equivariance properties:

DA(g) = Ad(g−1)DA Ad(g) ∀A ∈ C g ∈ G (6)

where D stands for ∇,∇∗ and �, respectively.

2.2. Stabilizers

Recall that the stabilizer (or isotropy subgroup) of A ∈ C w.r.t. the action of G is the subgroup

GA := {g ∈ G : A(g) = A
}

of G. It is determined by the holonomy of A. Indeed, g ∈ GA iff g is constant on any curve
horizontal with respect to A. Thus

GA = {g ∈ G : g
∣∣
PA,p0

= const
}

(7)

where PA,p0 denotes the holonomy bundle of A based at p0 ∈ P . Note that PA,p0 is of class
C2, because A is C1.

Let ξ ∈ LG. We have

∇Aξ = 0 ⇔ ξ
∣∣
PA,p0

= const ⇔ expG(ξ)
∣∣
PA,p0

= const

where the second equivalence is due to (2). Thus

expG(LG) ∩ GA = expG(ker(∇A)).
Since ker(∇A) is a closed subspace of the Hilbert space LG, the rhs is a submanifold of G.
Since the lhs is a neighbourhood of e in GA, it follows that GA is a Lie subgroup of G with Lie
algebra

LGA = ker(∇A) = {ξ ∈ LG : ξ
∣∣
PA,p0

= const
}

(8)
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see [14, section III.1.3]. Next, consider the natural group homomorphism

�p0 : G → G,g 
→ g(p0)

(the value of g at a point is of course well defined). Since convergence in Wk+1, by our
choice of k, implies pointwise convergence, �p0 is continuous, hence smooth. Due to (7),
the restriction of�p0 to the subgroup GA is injective, hence a Lie group isomorphism onto its
image. The image is

�p0(GA) = CG
(
HA,p0

)
where HA,p0 denotes the holonomy group of A based at p0. To see this, recall that HA,p0

is the structure group of PA,p0 . Thus, inclusion from left to right is due to equivariance of
the elements of G. For the converse inclusion it suffices to note that for any a ∈ CG(HA,p0),
the function on PA,p0 with constant value a is equivariant and, hence, can be equivariantly
prolonged to P, thus becoming an element of GA.

Let us summarize.

Theorem 2.1 (Stabilizer theorem). GA is a compact Lie subgroup of G with Lie algebra given
by (8). Through�p0 ,GA is isomorphic to CG

(
HA,p0

)
.

As an immediate consequence of the fact that GA is an (embedded) Lie subgroup, the
projection G → G/GA defines a locally trivial principal bundle [14, section 6.2.4].

In [60] it was shown that the map C × G → C × C, (A, g) 
→ (A,A(g)), is closed. It
follows [16, III, section 4]

Theorem 2.2. The action of G on C is proper.

The immediate consequences are:

(i) The orbits of the action of G on C are closed.
(ii) The orbit space M is Hausdorff.

A different proof of theorem 2.2 was given in [54]. By assigning to A ∈ C a Wk-
Riemannian metric on P,

hA(u, v) = hM(π∗u, π∗v) + 〈A(u),A(v)〉 u, v ∈ TpP p ∈ P
where hM is the Riemannian metric on M, a homeomorphism of C onto a closed submanifold
of the manifold Metk(P ) of Wk-Riemannian metrics on P is constructed (it is even a
diffeomorphism into). Metk(P ) is acted upon by the topological group Diff k+1(P ) of Wk+1-
diffeomorphisms of P. Diff k+1(P ) is known to be a smooth manifold, but not a Lie group.
The action is known to be smooth and proper [17, 27, 31]. It is shown in [54] that G is a
closed topological subgroup of Diff k+1(P ) (it is even a submanifold) and that the embedding
C → Metk(P ) is equivariant. Thus, properness carries over from the action of Diff k+1(P ) on
Metk(P ) to that of G on C.

Note that compactness of stabilizers is not needed in the second proof. Rather, it is a
consequence of properness of the action.

2.3. Orbit types

According to GA(g) = g−1GAg, the stabilizers along an orbit x ∈ M form a conjugacy class
in G. This class is called the orbit type of x and is denoted by Type(x). The set of orbit
types carries a natural partial ordering: σ � σ ′ iff there exist representatives S of σ and S′ of
σ ′ such that S ⊇ S′. Then for any pair of representatives S, S′ there exists g ∈ G such that
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S ⊇ aS′a−1. One says that S′ is subconjugate to S. Note that, although this definition of the
partial ordering of orbit types is the usual one [14, 19], it is not consistent with [54], where
the inverse partial ordering is used.

We are going to characterize orbit types in terms of certain bundle reductions of P, see
also [43] for a similar approach. For that purpose, let us consider, for a moment, smooth
connections and smooth local gauge transformations. Recall that a subgroup of G that can be
written as a centralizer is usually called a Howe subgroup. This is due to the fact that such
a subgroup, together with its centralizer, forms a reductive dual pair, a notion introduced by
Howe [45–47]. According to that, let us call a bundle reduction of P to a Howe subgroup of
G a Howe subbundle. (All bundle reductions are assumed to be smooth.) As any subgroup
H ⊆ G generates a Howe subgroup H̃ (containing H) by H̃ = C2

G(H), any bundle reduction
Q of P to H generates a Howe subbundle Q̃ (containing Q) by extending the structure group
to H̃ ,

Q̃ = QH̃ .

In particular, a connectionA generates a Howe subbundle P̃ A,p0 through its holonomy bundle.
In [54], P̃ A,p0 was called the evolution bundle of A. Since an element of G that commutes
withHA,p0 still commutes with H̃A,p0 , a gauge transformation that is constant on PA,p0 is still
constant on P̃ A,p0 . Thus

GA =
{
g ∈ G : g

∣∣∣P̃ A,p0
= const

}
. (9)

We claim that P̃ A,p0 consists of all p ∈ P obeying

g(p) = g(p0) ∀g ∈ GA.

To see this, let p ∈ P with g(p) = g(p0),∀g ∈ GA. There exist p′ ∈ PA,p0 and a ∈ G such
that p = p′a. Due to equivariance, g(p) = a−1g(p′)a, hence g(p0) = a−1g(p0)a,∀g ∈ GA.
Thus, a commutes with �p0(GA). Now the stabilizer theorem yields that a ∈ C2

G

(
HA,p0

) =
H̃A,p0 , hence p ∈ P̃ A,p0 .

It follows that P̃ A,p0 is determined by the subgroup GA rather than by A itself. Thus, by
assigning P̃ A,p0 to GA we obtain a map from stabilizers to Howe subbundles. Since GA can
be recovered from P̃ A,p0 via (9), the map is injective. What kind of Howe subbundles arise
in this way from stabilizers? Of course, all of them are generated by a connected reduction
of P. Howe subbundles with this property will be called holonomy-induced. Conversely,
let a holonomy-induced Howe subbundle Q̃ with generating connected bundle reduction Q
be given. As is well known [52], if dimM � 2, there exist connections in P which have
holonomy bundle Q. Then Q̃ is the Howe subbundle assigned to the stabilizer of any of these
connections.

To summarize, we have found, within the C∞-setting, that stabilizers are in 1–1
correspondence with holonomy-induced Howe subbundles. To carry over this characterization
to the conjugacy classes, we note that, for gauge transformations g,

PA(g),p0
= (
g

(
PA,p0

))
g(p0)

−1 (10)

where
g denotes the vertical automorphism of P defined by g, i.e.


g(p) = pg(p) ∀p ∈ P.
Since (10) carries over to the corresponding Howe subbundles, we have to factorize the
holonomy-induced Howe subbundles by vertical automorphisms of P. Since any isomorphism
of one bundle reduction of P onto another one can be extended to a vertical automorphism
of P, the factorization is actually by isomorphy. Moreover, in order to make the construction
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independent of the chosen point p0, one must take Howe subbundles modulo the principal
action of G on P. Note that then the corresponding structure groups are determined up to
conjugacy in G.

Thus, we have found a characterization of the orbit types of the action of smooth local
gauge transformations on smooth connections. Finally, one can prove that the action of G on
C has exactly the same orbit types [65].

Let us summarize.

Theorem 2.3 (Reduction theorem). The orbit types of the action of G on C are in 1–1
correspondence with smooth holonomy-induced Howe subbundles of P modulo isomorphy
and modulo the principal action of G on P. The correspondence is given by (9).

Note that it is obvious from (9) that the partial orderings of orbit types and bundle
reductions coincide. For later use, let us introduce the notation CS for the subset of connections
with stabilizer S, Cσ for the subset of connections of orbit type σ and Mσ for the subset of
orbits of type σ . Correspondingly, we define

C�S :=
⋃
S′⊇S

CS′ C�σ :=
⋃
σ ′�σ

Cσ ′ M�σ :=
⋃
σ ′�σ

Mσ ′

and similarly C�S, C�σ ,M�σ .

2.4. Decomposition theorem

In what follows we will see that there exists a natural generalization of the Hodge–de Rham
decomposition theorem (w.r.t. the L2-metric γ0) to the covariant derivatives ∇A. This has two
important consequences. First, it ensures that the orbits of the G-action are submanifolds.
Second, it implies that the two distributions on C, defined by

VA = im(∇A) HA = ker(∇∗
A) A ∈ C (11)

provide a natural orthogonal splitting of the tangent bundle

TC = V ⊕ H. (12)

This splitting is fundamental for all constructions discussed within the rest of this and the next
three sections. In particular, it is basic for the construction of tubes and slices, it ensures the
(locally trivial) fibre bundle structure on each stratum and it induces natural (weak) Riemannian
metrics on each stratum of the gauge orbit space via a Kaluza–Klein construction.

Using the theory of differential operators with Wl-coefficients [21, 23], one can verify
that the following decompositions hold, see [63] for explicit proofs.

Theorem 2.4 (Decomposition theorem). Let A ∈ C. Then

Wk(T∗M ⊗ AdP) = im(∇A)⊕ ker(∇∗
A) (13)

Wk−1(AdP) = im(�A)⊕ ker(�A) (14)

where the sums are orthogonal w.r.t. the corresponding L2-scalar products.

Remarks.

1. The decompositions still hold if one replaces ∇A,∇∗
A,�A by ∇A|Wl+1,∇∗

A|Wl,�A|Wl+1,
respectively, with dim(M)/2 < l � k.
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2. As an immediate consequence of (13),

ker(�A) = ker(∇A) (15)
im(�A) = im(∇∗

A). (16)

3. In the decomposition (14), the subspace ker(�A) of Wk+1 is viewed as a subspace of
Wk−1. Actually, there should occur ker(�A|Wk−1) instead. However, by virtue of
point 1 above, formula (15) holds also in degree dim(M)/2 < l � k. Since d is
elliptic, ker(∇A|Wl+1) = ker(∇A), for any dim(M)/2 < l � k. Hence, (15) implies
ker(�A|Wk−1) = ker(�A).

As an important consequence of the decomposition theorem one has

Theorem 2.5. For anyA ∈ C, the orbit ofA under the action ofG is an embedded submanifold
of C, naturally diffeomorphic to G/GA.

This was proved in [54]. Since the orbits are closed due to properness of the action and
since the topology of C is second countable (recall that C is separable), it suffices to show that
the map

ιA:G → C g 
→ A(g) (17)

is a subimmersion [14, section 5.12.5]. The map ιA factors through G/GA,

G → G/GA
ι̃A→ C.

Since the first mapping is the projection in a locally trivial principal bundle, it is a submersion.
We claim that ι̃A is a smooth immersion (so that (17) is a subimmersion, indeed).

Smoothness follows from the fact that, due to local triviality of the principal bundle
G → G/GA,G/GA can be covered by smooth local sections G/GA ⊇ U → G. Namely, locally,
ι̃A factors through such a section and ιA.

To prove that ι̃A is an immersion, it suffices to show that it is an immersion at [e] ∈ G/GA,
the class of the identity of G. Given a closed subspace Y of LG complementary to LGA, one
can find an appropriate local section (U, s) about [e] such that its tangent map (s∗)[e] maps
T[e]G/GA isomorphically onto Y . Then

(ι̃A∗)[e] ◦ ((s∗)[e])−1 = (ιA∗)e|Y .
Since (s∗)[e] is an isomorphism, it suffices to show that the rhs is injective and has closed
image. For that purpose, recall that the Killing field at A generated by ξ is

ιA∗ξ = ∇Aξ. (18)

Now, injectivity is obvious from (8). Moreover, im((ιA∗)e|Y) = im(∇A) and, due to the
decomposition theorem, the image is closed and admits a closed complement.

As a second important consequence of the decomposition theorem we note that the
tangent bundle splitting (12) holds and is orthogonal w.r.t. the L2-metric γ 0. Due to (6), the
distributions V and H are equivariant,

VA(g) = (VA)
(g) HA(g) = (HA)

(g). (19)

Geometrically, V consist of the subspaces tangent to the orbits. We stress that, in general,
neither V nor H are smooth or locally trivial. However, as we will see later, restrictions to
strata will be so.

Let us determine the projectors

v,h : TC → TC
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onto V and H, respectively. They are given by maps

C → B(T ) A 
→ vA,hA

where vA and hA denote the projectors associated with the decomposition (13). Since
ker(�A) ⊆ Wk+1, the decomposition (14) implies

Wk+1 = ker(�A)⊕ ker(�A)
⊥0 (20)

where ker(�A)
⊥0 = Wk+1 ∩ im(�A). Thus, by restriction, �A induces a bounded operator

ker(�A)
⊥0 → im(�A) which is invertible, hence has bounded inverse by the open mapping

theorem. The inverse can be prolonged to a bounded operator

GA : Wk−1(AdP) → Wk+1(AdP) (21)

the Green’s operator associated with �A, by setting GA| ker(�A) = 0. Note that GA�A :
Wk+1 → Wk+1 is the L2-orthogonal projector onto ker(�A)

⊥0 . Hence,

∇AGA�A = ∇A �AGA∇∗
A = ∇∗

A. (22)

Note, in particular, that GA is not the inverse of�A, unless GA is discrete, as in the case of the
principal stratum for semisimple structure group [60].

Now consider the composition ∇AGA∇∗
A, which is a bounded operator on T . Using (22)

one can check that it is a projector and that it acts trivially on HA and identically on VA. Thus

vA = ∇AGA∇∗
A hA = 1 − vA. (23)

From (6) we infer

GA(g) = Ad(g−1)GA Ad(g). (24)

It follows

vA(g) = Ad(g−1) vA Ad(g) hA(g) = Ad(g−1) hA Ad(g) (25)

which is consistent with (19).

2.5. Slice theorem

We assume the reader to be familiar with the notions of tube and slice [19]. They are
generalizations of the notions of local trivialization and local section, respectively, which
apply to group actions with a single orbit type.

Following [54], the normal distribution H can be used to construct tubes and slices for the
action of G on C. For x ∈ M, the normal bundle of the orbit π−1(x) is given by

Nx := H|π−1(x).

According to (19), Nx is equivariant. We claim that it is a smooth locally trivial vector
subbundle of TC|π−1(x). To see this, observe that for given A ∈ π−1(x), due to local triviality
of the principal bundle G → G/GA, there exists a neighbourhood UA of A in π−1(x) and a
smooth map θ : UA → G such that A′ = A(θ(A

′)), for any A′ ∈ UA. The map

UA × T → TC|UA (A′,X) 
→
(
A′,X(θ(A

′))
)

is easily seen to be a diffeomorphism. Due to equivariance of Nx , the pre-image of Nx |UA
under this map isUA×HA. This proves the assertion. Let us note that the argument shows that
any equivariant vector subbundle of TC|π−1(x) which has closed fibres is smooth and locally
trivial.
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For ε > 0, define

HA,ε :=
{
X ∈ HA :

√
γ kA(X,X) < ε

}
where the Wk-metric γ k was defined in (4). Consider the smooth subbundle

Nx,ε := {(A,X) ∈ Nx : X ∈ HA,ε}
ofNx . Note thatNx,ε is not just the ε-disc bundle ofNx , because orthogonality and length are
taken w.r.t. different metrics. Due to G-invariance of γ k,Nx,ε is equivariant.

As G-spaces, Nx and Nx,ε are equivariantly diffeomorphic through the rescaling map

ε : Nx → Nx,ε (A,X) 
→
A, ε√

γ kA(X,X) + 1
X

 .
By restriction, the map

exp : TC → C (A,X) 
→ A + X

which is in fact the exponential map w.r.t. the L2-metric γ 0, defines a smooth G-equivariant
map Nx,ε → C. The image is

Ux,ε = {A +X : π(A) = x,X ∈ HA,ε}. (26)

It is an open invariant neighbourhood of π−1(x) in C (called ‘tubular neighbourhood’). Using
that π−1(x) is an embedded submanifold, one can show [54] that there exists ε > 0 such that
the restriction of exp to Nx,ε ⊆ TC is injective. Consequently, the composition

exp ◦ε : Nx → C (27)

is an equivariant diffeomorphism onto Ux,ε , i.e. it is a tube. (Note that already exp|Nx,ε alone
is a tube.)

From (26) we can easily read off the slice about A ∈ π−1(x) associated with Ux,ε . It is
the subset

SA,ε := {A +X : X ∈ HA,ε}
of Ux,ε . By construction, SA,ε obeys the defining properties of a slice:

(i) Ux,ε = (SA,ε)(G),
(ii) SA,ε is closed in Ux,ε ,

(iii) SA,ε is invariant under the stabilizer GA,
(iv) For any g ∈ G, (SA,ε)(g) ∩ SA,ε �= ∅ implies g ∈ GA.

We conclude:

Theorem 2.6 (Slice theorem). For any x ∈ M there exists ε > 0 such that (27) is a tube
about x. For any A ∈ C there exists ε > 0 such that SA,ε is a slice about A. In particular, the
action of G on C admits a slice at any point.

In the following, whenever we write Ux,ε or SA,ε , it is understood that ε is small enough
to make the subset a tubular neighbourhood or a slice, respectively.

The authors of [54] actually prove more: they show that for any x ∈ M and any open
invariant neighbourhood U of x in C there exists ε > 0 such that Ux,ε ⊆ U and U \Ux,ε �= ∅.
They call this the ‘local slice theorem’. As a consequence, M is a regular topological space,
meaning that whenever one has a closed subset V and a point x /∈ V then there exists a
neighbourhood of x, whose closure in M does not intersect V . According to Urysohn’s
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metrization theorem, regularity in combination with second countability (which is due to
separability of C) then implies that M is a metrizable space.

As an application, let us note an immediate consequence of the slice theorem. Property
(iv) of slices implies that for any x ∈ Mσ and any A ∈ CS ,

Ux,ε ⊆ C�σ SA,ε ⊆ C�S. (28)

It follows that for any stabilizer S and orbit type σ the following subsets are open:

CS in C�S Cσ in C�σ Mσ in M�σ .

To see this, let A ∈ CS . Since Uπ(A),ε is a neighbourhood of A in C, its intersection with C�S

is a neighbourhood of A in C�S . Due to (28), the intersection is contained in

C�S ∩ C�S = CS.
The argument applies without change to Cσ . For Mσ it suffices to note that Ux,ε projects to a
neighbourhood of x in M.

2.6. Approximation theorem

It is well known that connections with a trivial stabilizer under G-action are dense in C, see
[70]. More generally, the question arises, whether Cσ is dense in C�σ , in other words, whether
a connection with a nontrivial stabilizer can be approximated by connections with a prescribed,
strictly smaller stabilizer. In [54], the following is proved.

Theorem 2.7 (Approximation theorem). Assume dimM � 2. Let A ∈ C and let Q be a
connected bundle reduction of P to a (not necessarily closed) Lie subgroup. Assume that Q
contains a holonomy bundle of A. Then there exists X ∈ T such that all A + tX, t ∈ R\{0},
have holonomy bundle Q.

By virtue of the characterization of stabilizers by bundle reductions of P, see (7), the
approximation theorem implies that the following subsets are dense:

CS ⊆ C�S Cσ ⊆ C�σ Mσ ⊆ M�σ . (29)

Namely, let A ∈ C�S . Then S ⊆ GA. Hence, according with (7), the bundle reduction QS

associated with S, based at some p0, contains the holonomy bundle of A, based at p0. Of
course, so does already the connected componentQS,p0 ⊆ QS of p0. Thus, theorem 2.7 yields
that A can be approximated by connections with holonomy bundle QS,p0 . By construction,
such connections have stabilizer S. Hence, CS is dense in C�S . Then denseness of Cσ in C�σ

and of Mσ in M�σ follows.
One can combine openness, found above, and denseness by saying that CS, Cσ ,Mσ are

generic sets in C�S, C�σ , and M�σ , respectively.
Combining the approximation theorem with the slice theorem one arrives at the following

closure formulae: for any orbit type σ ,

Cσ = C�σ Mσ = M�σ . (30)

Indeed, the inclusions from right to left are obvious from (29). The converse inclusions follow
from the slice theorem: let A ∈ Cσ . Consider UA,ε ∩ Cσ . Since this is a neighbourhood of
A in Cσ , it contains some B ∈ Cσ . According to (28), then σ � Type(A). Thus, A ∈ C�σ .
The inclusion for Mσ then follows by noting that for saturated sets such as Cσ , closure and
projection commute.

We remark that for stabilizers S one has a similar formula:

CS = C�S. (31)
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While ⊇ is again due to (29), ⊆ can be proved without the slice theorem by the following
simple argument. For any g ∈ C, consider the map

�g : C → T A 
→ A(g) − A.

As the �g are continuous, the subsets �−1
g (0) are closed in C. Then C�S = ⋂

g∈S �
−1
g (0) is

closed. Hence, CS ⊆ C�S .

3. Smooth fibre bundle structure of strata

In this section, we shall explain how the projections

πσ : Cσ → Mσ

induced from π : C → M can be equipped with the structure of smooth locally trivial fibre
bundles. As a result, in a sense, π fibres over the set of orbit types into such bundles.

3.1. Submanifold structure of the configuration space strata

To prove that Cσ is a submanifold of C, it suffices to show that for any x ∈ Mσ the subset

Uσx,ε := Ux,ε ∩ Cσ

which is a neighbourhood of the orbit π−1(x) in Cσ , is a submanifold of Ux,ε. For anyA ∈ Cσ ,
define

SσA,ε := SA,ε ∩ Cσ

Hσ
A := {X ∈ HA : GX ⊇ GA}

Hσ
A,ε := HA,ε ∩ Hσ

A.

(32)

Due to (28),

GA′ = GA ∀A′ ∈ SσA,ε. (33)

Hence, SσA,ε = {A + X : X ∈ HA,ε,GA+X = GA}. Since GA+X = GA iff GX ⊇ GA,

SσA,ε = {A +X : X ∈ Hσ
A,ε

}
. (34)

Then

Uσx,ε = {A +X : A ∈ π−1(x),X ∈ Hσ
A,ε

}
.

Therefore, the pre-image of Uσx,ε under the equivariant diffeomorphism (27) is the vector
subbundle

Nσ
x :=

⋃
A∈π−1(x)

Hσ
A

of Nx . As we have argued in subsection 2.5, since Nσ
x is equivariant and since its fibres are

closed subspaces of T , it is a smooth subbundle of TC|π−1(x), hence ofNx . It follows that Uσx,ε
is a smooth submanifold of Ux,ε , for any x ∈ Mσ , as asserted.

For later purposes, let us note that the vector subbundle Nσ
x is in fact trivial, where a

smooth trivialization is given by

G/GA × Hσ
A → Nσ

x ([g],X) 
→ (
A(g),X(g)

)
for some A ∈ π−1(x). Note that this map is well defined precisely because GX ⊇ GA. It
follows that Uσx,ε also has a direct product structure. This can be made explicit by introducing
maps

χσA,ε : SσA,ε × G/GA → Uσπ(A),ε (A′, [g]) 
→ A′(g) (35)
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which are easily seen to be diffeomorphisms. Note that, for obvious reasons, the roles of fibre
and base have changed here. Also for later purposes, let us note that

TSσA,ε = SσA,ε × Hσ
A (36)

for any A ∈ Cσ , which is obvious from (34).

3.2. Manifold structure of the orbit space strata

We shall construct an atlas of the stratum Mσ using the partial slices SσA,ε, A ∈ Cσ . For any
x ∈ Mσ , define

V σx,ε := π
(
Uσx,ε

)
.

By restriction in domain and range, for any A ∈ π−1(x), π defines a map

πσA,ε : SσA,ε → V σ
x,ε. (37)

We prove:

(i) πσA,ε is bijective: Due to (33) and property (iv) of slices, none of the elements of SσA,ε has
a gauge copy in SσA,ε .

(ii) πσA,ε is a homeomorphism onto V σ
x,ε: It suffices to check that π maps open subsets of

SσA,ε to open subsets of V σ
x,ε . Let U ⊆ SσA,ε be open. Then U = SσA,ε ∩ U ′, where

U ′ ⊆ SA,ε is open. Using a local trivialization of the normal bundle Nx , one can show
that the saturation Ũ ′ = U ′(G) is open in C. Since SσA,ε does not contain gauge copies,
U = SσA,ε ∩ Ũ ′. Since Ũ ′ is saturated,

π(U) = π
(
SσA,ε

) ∩ π(Ũ ′) = V σ
x,ε ∩ π(Ũ ′).

Here π(Ũ ′) is open in M. Hence, π(U) is open in V σ
x,ε .

(iii) V σ
x,ε is open in Mσ : obviously, V σ

x,ε = Mσ ∩ π(Uπ(A),ε), where Uπ(A),ε is open in C.

Since the partial slices SσA,ε are open subsets of closed affine subspaces of C, see (34),

the family
(
V σ
π(A),ε,

(
πσA,ε

)−1)
, A ∈ Cσ , provides a covering of Mσ by local charts (one can

make this more explicit by further mapping SσA,ε → Hσ
A,ε). We finally have to check whether

the transition maps between these charts are smooth. Due to (35), for A1, A2 ∈ Cσ we have a
diffeomorphism

SσA1,ε1
∩ Uσπ(A2),ε2

× G/GA1

χσA1 ,ε1−→ Uσπ(A1),ε1
∩ Uσπ(A2),ε2

(χσA2 ,ε2
)−1

−→ SσA2,ε2
∩ Uσπ(A1),ε1

× G/GA2 .

The transition map
(
πσA2,ε2

)−1 ◦ πσA1,ε1
is given by the composition of the embedding

A′ 
→ (A′, [e]), the above diffeomorphism, and projection to the first component. Hence,
it is smooth. Thus, the atlas we have constructed equips Mσ with the structure of a smooth
Hilbert manifold.

3.3. Smooth fibre bundle structure

Using the local diffeomorphisms χσA,ε, we obtain local diffeomorphisms

V σπ(A),ε × G/GA
(πσA,ε)

−1×id−→ Sσπ(A),ε × G/GA
χσA,ε−→ Uσπ(A),ε

which provide a covering of Cσ by local trivializations of the projection πσ : Cσ → Mσ .
Thus, the latter is a smooth locally trivial fibre bundle with standard fibre G/GA, for some
A ∈ Cσ . In particular, πσ is a submersion, because locally it is the projection onto the first
component.
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Let us consider, in particular, the principal orbit type σ = p, which is the conjugacy class
consisting of the subgroup Z̃(G) of constant functions P → Z(G), where Z(G) denotes the
centre of G. Since Z̃(G) is normal in G, the smooth locally trivial fibre bundle

πp : Cp → Mp (38)

is in fact principal,with structure group G̃ := G/Z̃(G). This bundle has been studied intensively
[58–60, 70]. An important aspect is that nontriviality of this bundle is an obstruction to the
existence of smooth (or even continuous) gauges. An elegant argument to show nontriviality,
i.e. nonexistence of smooth gauges, is due to Singer [70]. Namely, assume that the bundle
was trivial, i.e. Cp ∼=Mp × G̃. Since Cp is contractible, then the homotopy groups were
πi(G̃) = 0, i � 1. Since in many cases this is not true, one concludes that in these cases (38)
is nontrivial. For G = SU(n), examples of this situation are: spacetime manifolds M = S3

and S4 [70], T4 and S2 × S2 [51] and others. This explains the Gribov ambiguity [40] for the
corresponding models.

Remark. For the other orbit types, representatives S are not normal in G. In order to have a
similar picture as in the case of the principal stratum, one would have to take the submanifold
CS of connections with stabilizer S. CS is acted upon freely by N/S, where N denotes the
normalizer of S in G. Provided one could show that N is a Lie subgroup of G—a problem
which, to our knowledge, is not settled yet—the projectionπS : CS → Mσ would be a smooth
locally trivial principal fibre bundle and πσ : Cσ → Mσ would be associated with this bundle
via the action of N/S on G/S.

4. The stratification of the gauge orbit space M

A stratification of a topological space X is a countable disjoint decomposition into smooth
manifoldsXi, i ∈ I (so-called strata), such that the ‘frontier condition‘ is satisfied:

Xi ∩Xi′ �= ∅ ⇒ Xi ⊆ Xi′ ∀i, i ′ ∈ I.
As this notion is rather weak, one usually adds additional assumptions about the linking
between the strata, thus arriving at special types of stratification. According to [54], the type
of stratification appropriate for our purposes is called ‘regular’ and is defined by the property

Xi ∩Xi′ �= ∅ ⇒ Xi closed in Xi ∪Xi′ ∀i, i ′ ∈ I.
The following is due to Kondracki and Rogulski [54].

Theorem 4.1 (Stratification theorem). The decomposition of M by orbit types is a regular
stratification.

To prove it, one has to check countability of orbit types and the frontier and regularity
conditions.

4.1. Countability of orbit types

Due to the reduction theorem, orbit types are in 1–1 correspondence with certain reductions
of P to Howe subgroups, modulo isomorphy of the reductions and modulo conjugacy of the
subgroups. We note the following facts:

(i) Howe subgroups are closed.
(ii) There are at most countably many conjugacy classes of closed subgroups in a compact

group [52].
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(iii) There are at most countably many isomorphism classes of principal bundles with a given
structure group over a compact manifold. The classes are in 1–1 correspondence with
arch-wise connected components of the space of continuous maps from the base space
of the bundle to the classifying space. General arguments ensure that there are at most
countably many such components.

It follows from (i)–(iii) that the number of orbit types is at most countable.
Let us note that the number of Howe subgroups in a compact Lie group is actually finite.

This follows from the fact that any centralizer in a compact Lie group is generated by finitely
many elements [14, chapter 9] and that a compact group action on a compact manifold has a
finite number of orbit types [19].

4.2. Frontier and regularity conditions

Let σ, σ ′ be orbit types such that Mσ ∩ Mσ ′ �= ∅. According to the closure formula (30),
Mσ is a union of strata. If Mσ ′

intersects the union, it must in fact coincide with one of
these strata. Then Mσ ′ ⊆ Mσ . Thus, the decomposition by orbit types satisfies the frontier
condition.

On the other hand, we know from the slice theorem that Mσ is open in M�σ , hence in
Mσ . Then Mσ is open in Mσ ∪Mσ ′

, because the latter is a subset of Mσ due to the frontier
condition. Then Mσ ′

, being the complement, is closed. Hence, the decomposition by orbit
types is a regular stratification.

(This actually shows that if all strata are open in their closures, i.e., locally closed, the
frontier condition implies regularity.)

Remarks.

1. Consider the relation

Mσ � Mσ ′ ⇔ Mσ ∩ Mσ ′ �= ∅.
For any stratification, this relation is reflexive and transitive, i.e., a quasi-ordering (the
‘natural quasi-ordering’ of the stratification). If the stratification is regular, the relation
is also antisymmetric, hence a partial ordering. As for the stratification of M by orbit
types, (30) implies that the natural partial ordering of the strata is just inverse to that of
the corresponding orbit types.

2. Instead of using Sobolev techniques one can also stick to smooth connection forms
and gauge transformations. Then one obtains essentially analogous results about the
stratification of the corresponding gauge orbit space where, roughly speaking, one has to
replace ‘Hilbert manifold’ and ‘Hilbert Lie group’ by ‘tame Fréchet manifold’ and ‘tame
Fréchet Lie group’, see [1, 2].

5. L2-Riemannian structure on strata

The L2-metric γ 0 on C induces a weak Riemannian metric on each stratum Mσ . This was
discussed for the case of the principal stratum in [11, 71] and for the general case in [12].
The basic idea consists in restricting the tangent bundle splitting (12) to strata. This yields a
smooth connection in each bundle which allows tangent vectors to be lifted, thus projecting
γ 0 to a metric on each stratum.
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5.1. A natural connection

By restriction, the distribution V, made up by the tangent spaces of the orbits, induces
a distribution Vσ on Cσ . In contrast to V,Vσ is smooth and locally trivial, because
Vσ = ker(πσ ∗) and πσ is a smooth submersion. Let Hσ denote the normal distribution
associated with Vσ w.r.t. the L2-metric γ 0. By construction

Hσ := H ∩ TCσ .

Due to (12) and Vσ ⊆ TCσ ,

TCσ = Vσ ⊕ Hσ (39)

where the sum is orthogonal w.r.t. γ 0. Moreover, Hσ is G-equivariant

Hσ
A(g)

= (Hσ
A

)(g)
.

We draw the attention of the reader to the fact that we had already introduced the notation
Hσ
A for the subspace of HA consisting of elements invariant under GA, see (32). This notation

suggests that Hσ
A is in fact the fibre at A of the distribution Hσ . To see that this holds indeed,

recall that HA = TASA,ε. Hence, the fibre of Hσ is

TASA,ε ∩ TACσ = TASσA,ε.

According to (36), the rhs is given by Hσ
A.

In the remaining part of this subsection we shall prove that the distribution Hσ is smooth
and locally trivial (viewed as a subbundle of TCσ ). Note that, due to weakness of γ 0, this is
not obvious from smoothness and local triviality of Vσ . It follows then that Hσ is a smooth
connection in the G-bundle πσ : Cσ → Mσ .

Smoothness of Hσ would follow from smoothness of either one of the corresponding
γ 0-orthogonal projectors h|TCσ or v|TCσ which, in turn, would follow from smoothness of the
restrictions of h or v, respectively, to TC|Cσ . Recall from (23) that the restriction of v is given
by the map

Cσ → B(T ) A 
→ ∇AGA∇∗
A.

This map decomposes as

Cσ
diag−→ Cσ×Cσ×Cσ

∇·×G·×∇∗
·−→ B(Wk+1,Wk)×B(Wk−1,Wk+1)×B(Wk,Wk−1)

comp.−→ B(Wk).

Since diagonal embedding, ∇·,∇∗
· and composition of bounded operators are continuous

(multi-) linear maps, it suffices to prove smoothness of the map

Cσ → B(Wk−1,Wk+1) A 
→ GA. (40)

Pulling it back with a local trivialization χσA0,ε
, A0 ∈ Cσ , see (35), we obtain a map

SσA0,ε
× G/GA0 → B(Wk−1,Wk+1) (A, [g]) 
→ GA(g)

which is well defined, because GA = GA0 ,∀A ∈ SσA0,ε
. Due to (24), this map is smooth along

G/GA0 . Thus, what we actually have to show is that the restrictions of the map (40) to the
partial slices SσA0,ε

, A0 ∈ Cσ , are smooth. For that purpose, recall that GA is constructed from
the (bounded) inverse of the operator

�̃A : ker(�A)
⊥0 → im(�A) (41)

induced by �A. Due to GA = GA0 , equation (15) and the decomposition theorem, we have

ker(�A) = ker
(
�A0

)
im(�A) = im

(
�A0

)
. (42)
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Hence, (41) reads

�̃A : ker
(
�A0

)⊥0 → im
(
�A0

) ∀A ∈ SσA0,ε
.

Thus, the map under consideration decomposes into

SσA0,ε

�̃·−→ Inv
(

ker
(
�A0

)⊥0
, im

(
�A0

)) inv−→ Inv
(

im
(
�A0

)
, ker

(
�A0

)⊥0
)

followed by prolongation to a bounded operator Wk−1 → Wk+1. Here Inv(·, ·) ⊆ B(·, ·)
denotes the open subset of invertible bounded operators, whereas ‘inv’ stands for the inversion
map, which is smooth. Since the first step factorizes into continuous linear maps and
composition of bounded operators, it is smooth, too.

This concludes the proof of smoothness of the projectors v|TCσ and h|TCσ and, hence, of
the distribution Hσ .

Next, let us construct local trivializations of Hσ . To this end, for A0 ∈ Cσ , consider the
distribution Dσ

A0,ε
on SσA0,ε

× G/GA0 , made up by the subspaces tangent to SσA0,ε
. Due to (36),

it is trivial. We claim that the map

Dσ
A0,ε

→ T
(
SσA0,ε

× G/GA0

) (χσA0 ,ε
)∗→ TUσπ(A0),ε

h→ Hσ
∣∣
UσA0 ,ε

(43)

is a smooth vector bundle isomorphism and, thus, provides a local trivialization of Hσ . To see
this, note that

(
χσA0,ε

)
∗ maps Dσ

A0,ε
isomorphically on the equivariant distribution⋃

[g]∈G/GA0

TSσ
A
(g)

0 ,ε
.

Hence, due to equivariance of Hσ and h, it suffices to show that the map

TSσA0,ε

h→ Hσ
∣∣
SσA0 ,ε

(44)

is a smooth vector bundle isomorphism. We shall construct a smooth inverse.
Recall that SA0,ε is transversal to any orbit it meets. Hence,

HA0 ∩ VA = ker
(∇∗

A0

) ∩ im(∇A) = {0} ∀A ∈ SσA0,ε
.

Then �A0A := ∇∗
A0

∇A has kernel ker(∇A) = ker(�A) and image im(∇∗
A0
) = im(�A0). In

particular, for any element A of the partial slice SσA0,ε
, ker(�A0A) = ker(�A0). Thus, we can

construct a partial inverse GA0A similar to GA0 and GA. By construction

GA0A�A0A = GA0�A0 = GA�A �A0AGA0A = �A0 GA0 = �AGA. (45)

Define hA0A := idT − ∇AGA0A∇∗
A. Using (22) and (45), one can check that

hA0AhA = hA0 hA0A = hA0A hA0AhA0 = hA0 hAhA0A = hA (46)

for any A ∈ SσA0,ε
. It follows that hA0A maps HA to HA0 . Since, due to (6),

h
A
(g)

0 A(g)
= Ad(g−1)hA0A Ad(g)

hA0A maps Hσ
A onto Hσ

A0
. Formulae (46) imply

hA0AhA
∣∣Hσ

A0
= idHσ

A0
hAhA0A

∣∣Hσ
A = idHσ

A
∀A ∈ SσA0A

.

Since the map SσA0A
→ B(T ), A 
→ hA0A, is smooth, which can be shown in a similar way as

for the map A 
→ hA, it provides the desired inverse of (44), thus proving that (43) is a local
trivialization of Hσ .

We remark that the operators hA0A and vA0A := ∇AGA0A∇∗
A0

, where A ∈ SσA0A
,A0 ∈ Cσ ,

are the projectors associated with the (not necessarily L2-orthogonal) decomposition

T = VA ⊕ HA0 .

This can be checked using (22) again.
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Finally, we note that, with the above connection, there is an associated equivariant
differential form with values in LG, given by

�A(A,X) := GA∇∗
AX, (47)

for all (A,X) ∈ C × T = TC. For the principal stratum Mp, we have

�A(A,∇Aξ) = ξ ∀ξ ∈ LG (48)

showing that � is an ordinary connection form in the principal fibre bundle over Mp with
structure group G factorized by its centre. For the other strata, however,�A maps the Killing
field generated by ξ to the projection of ξ onto the L2-orthogonal complement of LGA in LG.
We further comment on this below.

5.2. The metric

The natural connection Hσ and the Riemannian metric γ 0 induce a Riemannian metric γ 0,σ on
Mσ as follows. Due to the open mapping theorem, restriction of πσ ∗ to a fibre Hσ

A,A ∈ Cσ ,
induces a Banach space isomorphism onto Tπ(A)Mσ . This allows tangent vectors at x ∈ Mσ

to be lifted to horizontal tangent vectors at A ∈ π−1(x), evaluating their scalar product w.r.t.
γ 0. Due to equivariance of Hσ and invariance of γ 0, the result does not depend on the choice
of the representative A. Due to smoothness of Hσ , the Riemannian metric γ 0,σ on Mσ so
constructed is smooth.

Let us determine the local representatives of γ 0,σ w.r.t. the charts
(
πσA0,ε

)−1
, A0 ∈ Cσ , see

(37). Let A ∈ SσA0,ε
. For tangent vectors (A,Xi) ∈ TASσA0,ε

= SσA0,ε
× Hσ

A0
, we have(

πσA0,ε

)∗
γ 0,σ ((A,X1), (A,X2)) = γ 0,σ ((πσA0,ε

)
∗ (A,X1),

(
πσA0,ε

)
∗ (A,X2)

)
.

Horizontal lift of
(
πσA0,ε

)
∗(A,Xi) to A yields (A,hAXi). Hence(

πσA0,ε

)∗
γ 0,σ ((A,X1), (A,X2)) = (X1,hAX2)0 (49)

where we have used h∗
A = hA and h2

A = hA. In this formula, we can replace hA by hA0 hA.
Since the latter maps Hσ

A0
to itself, the operator which represents the scalar product (49) on

Hσ
A0

is

hA0 hA
∣∣
Hσ
A0

.

Thus, w.r.t. the charts
(
πσA0,ε

)−1
, γ 0,σ is given by the smooth map

SσA0,ε
→ B

(
Hσ
A0

)
A 
→ hA0 hA

∣∣
Hσ
A0

.

Using (46), one can check that the inverse of hA0 hA
∣∣
Hσ
A0

is given by hA0Ah∗
A0A

. In particular,

hσA0
hσA
∣∣
Hσ
A0

is indeed a Banach space isomorphism.

Remarks.

1. It can be easily seen that the G-invariantL2-metric γ 0 on the bundle space Cσ is uniquely
characterized by the triple (γ 0,σ ,�, (·, ·)0),where (·, ·)0 denotes theL2-scalar product on
LG. This is a structure similar to that in Kaluza–Klein theory, where G-invariant metrics
η on a G-bundle Q with fibre G/H over spacetime M are in 1–1 correspondence with
triples (ηM,ω, 〈·, ·〉). Here ηM is a metric on M,ω is a connection form in the principal
bundle P with structure group N/H associated with Q and 〈·, ·〉 is a Ad(G)-invariant
scalar product on the Lie algebra of G. Moreover, N denotes the normalizer of H in G.
According to the remark at the end of subsection 3.3, in our case it is unclear whether the
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normalizer of a given stabilizer GA in G is a Lie subgroup. Thus, we cannot construct the
above associated principal bundle and give an interpretation of � as a connection form in
this bundle.

2. In a similar way one can project Wk-metrics, like γ k , see (4), or ηk , see (5), to metrics
on the strata. To our knowledge this has not been investigated yet, see, however, [42] for
results on the restriction of η2 to some instanton spaces.

5.3. Curvature

The same tedious but straightforward computation as in the case of the principal stratum [11]
yields for the local representative of the Riemannian curvature tensor

R : SσA0,ε
→ B

(
Hσ
A0

⊗ Hσ
A0

⊗ Hσ
A0
,Hσ

A0

)
(50)

RA(X, Y )Z = hσA0
(−2KZGAK∗

XY − KYGAK∗
XZ + KXGAK∗

YZ)

whereX,Y,Z ∈ Hσ
A0
, A ∈ SσA0,ε

and KX : Wk+1(AdP) → Wk(T∗M ⊗ AdP) denotes taking
the commutator with X and K∗

X : Wk(T∗M ⊗ AdP) → Wk(AdP) its formal adjoint.
From (50) one obtains for the local representative of the sectional curvature R of a 2-plane

P ⊆ Hσ
A0

RA(P) = 3(K∗
XY,GAK∗

XY )0

whereX,Y ∈ Hσ
A0

are orthonormal vectors spanning P. We claim that the sectional curvature
is nonnegative, as in the case of the principal stratum [11, 71]. To see this, denote ξ = K∗

XY .
Since ξ ∈ Wk−1(AdP), one can decompose it according to the decomposition theorem
ξ = ξim + ξker. By construction of GA, ξim = �AGAξ and im(GA) ⊥0 ker(�A). It follows

(ξ,GAξ)0 = (ξim,GAξ)0 = (�AGAξ,GAξ)0 = (∇AGAξ,∇AGAξ)0.

5.4. Formal volume element

For the case of the principal stratum Mp, a formal expression for the volume element of the
metric γ 0,p was derived in [10]:

det
(

hA0 hA
∣∣
HA0

)1/2
= det

(
�A0A

)
det
(
�A0

)1/2
det(�A)1/2

A ∈ Sp
A0,ε

A0 ∈ Cp (51)

(recall that H
p
A0

= HA0). The function A 
→ det(�A0A) is known as the Faddeev–Popov
determinant in the background potential A0. It follows that the functional integral derived by
the Faddeev–Popov procedure [30], can be geometrically interpreted as the formal integral
defined by the naturalL2-Riemannian structure on Mp [10]. Schrödinger quantum mechanics
on the gauge orbit space has been discussed in this context, see e.g. [39] and references therein.

It is easy to see that (51) extends to the other strata. Namely, for A0 ∈ Cσ and A ∈ SσA0,ε

we have seen that�A,�A0 , and�A0A have common kernel ker(�A0) and image im(�A0). By
defining their determinant as that of the restricted operators

ker
(
�A0

)⊥0 → im
(
�A0

)
(i.e. by ‘removing zero modes’), one can establish (51) by essentially the same proof as in the
case of the principal stratum.

In particular, one can use (51) to formally define an integral for each stratum. However,
as for the physical interpretation, the mere sum of such integrals would certainly not be a
reasonable extension of the Faddeev–Popov procedure from the principal stratum to the whole
orbit space, because it does not take into account any ‘interaction’ between strata.
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5.5. Geodesics

In [12], the following was proved.

Theorem 5.1. Let A ∈ Cσ and X ∈ Hσ
A. Let I denote the connected component of 0 in

{t ∈ R : A + tX ∈ Cσ }. Then I is non-empty, open, and

I → Mσ t 
→ πσ (A + tX)

is a geodesic in Mσ . Conversely, any geodesic in Mσ is of this form.

Note that

∇∗
A+tXX = ∇∗

AX = 0 ∀A ∈ C X ∈ Hσ
A t ∈ R (52)

so that the straight line A + tX is perpendicular to any orbit it meets. Thus, the theorem says
that the geodesics in Mσ are given by projections of segments of straight lines inside Cσ which
are perpendicular to orbits.

Note also that the theorem, in particular, shows that the charts
(
πσA0,ε

)−1
provide normal

coordinates.
In [12], the above characterization of orbits is used to prove that the principal stratum, in

general, is not geodesically complete. In fact, the argument given there can be extended to
prove

Theorem 5.2. Mσ is geodesically complete if and only if there does not exist σ ′ such that
σ < σ ′.

Indeed, for A ∈ Cσ and X ∈ Hσ
A, we have GA+tX ⊇ GA ∩ GX = GA. Therefore,

A + tX ∈ C�σ ∀t ∈ R. (53)

In particular, if there is no σ ′ with σ < σ ′, the geodesic associated with A and X is defined
for all values t ∈ R.

Now assume that σ < σ ′ for some σ ′. Choose x ′ ∈ Mσ ′
and a tube Ux′,ε about the orbit

π−1(x ′). Since Ux′,ε is a neighbourhood of π−1(x ′) in C, the denseness properties (29) imply
Ux′,ε ∩ Cσ �= ∅. Since Ux′,ε =⋃A′∈π−1(x′) Sσ

′
A′,ε one finds A′ such that Sσ ′

A′,ε ∩ Cσ �= ∅. Choose

A from the intersection and let X ∈ T such that A′ = A + X. Since X ∈ Hσ ′
A′ , (52) implies

that ∇∗
AX = 0. Since A ∈ Sσ ′

A′,ε,GA ⊆ GA′ . It follows that X ∈ Hσ
A. Thus, A and X define a

geodesic in Mσ that cannot be prolonged to values t � 1.
The following theorem was stated for the principal stratum in [12].

Theorem 5.3. Let A ∈ Cσ ,X ∈ Hσ
A. The set of values t ∈ R for which A + tX /∈ Cσ is

discrete.

To see this, denote C(t) = A + tX. According to (53), C−1(Cσ ) is open in R, because Cσ
is open in C�σ . Hence, R\C−1(Cσ ) is closed in R.

Let t0 ∈ R\C−1(Cσ ). According to (52), X ∈ ker(∇∗
C(t0)

), so that the slice theorem
implies C(t) = C(t0) + (t − t0)X ∈ SC(t0),ε for t close to t0. If t0 was an accumulation point
of R\C−1(Cσ ), there would exist t1 �= t0 such that C(t1) ∈ SC(t0),ε ∩ Cσ ′

for some σ ′ > σ . By
the properties of the slice, GC(t1) ⊆ GC(t0). Since C(t1) = C(t0) + (t1 − t0)X, then GX ⊇ GC(t1).
Writing A = C(t1)− t1X one sees that then GA ⊆ GC(t1) (contradiction). Hence, R\C−1(Cσ )
consists of isolated points. Due to closedness, it is then discrete.
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6. Classification of gauge orbit types for G = SU (n)

Until now, complete classification results for the set of orbit types are known only for gauge
group SU(n) and base manifolds of dimension up to four [65, 66], see also [67] for the
discussion of a coarser stratification. In the following two sections these results will be
reviewed. According to the reduction theorem, to determine the set of orbit types one has to
work out the following programme:

1. classification of Howe subgroups of SU(n) up to conjugacy,
2. classification of Howe subbundles of P up to isomorphy,
3. specification of Howe subbundles which are holonomy-induced,
4. factorization by SU(n)-action,
5. determination of the natural partial ordering of Howe subbundles.

6.1. Howe subgroups of SU(n)

General references for the determination of Howe subgroups of classical Lie groups are
[62, 68], see also [64] for the case of complex semisimple Lie algebras. For SU(n), however,
it is not necessary to apply the general theory, because one can show, using the double
commutant theorem, that the Howe subgroups of SU(n) are in 1–1 correspondence to unital
∗-subalgebras of Mn(C), the algebra of complex n × n matrices. The relation is given by
intersecting the subalgebras with SU(n).

The unital ∗-subalgebras of Mn(C) can be described as follows. Let K(n) denote the
set of pairs J = (k,m) of sequences k = (k1, . . . , kr), m = (m1, . . . ,mr), r = 1, . . . , n,
consisting of positive integers such that

k · m =
r∑
i=1

kimi = n. (54)

Any J ∈ K(n) defines a decomposition

C
n =

r⊕
i=1

C
ki ⊗ C

mi (55)

and an embedding
r∏
i=1

Mki (C) → Mn(C) (D1, . . . ,Dr) 
→
r⊕
i=1

Di ⊗ 1mi . (56)

We denote the image of this embedding by MJ (C), its intersection with U(n) by U(J ) and
its intersection with SU(n) by SU(J ). By construction, MJ (C) is a unital ∗-subalgebra of
Mn(C). Conversely, it is not hard to show that any unital ∗-subalgebra of Mn(C) is conjugate
to MJ (C) for some J ∈ K(n). Hence, up to conjugacy, the Howe subgroups of SU(n) are
given by the subgroups SU(J ), J ∈ K(n). Finally, it is evident that SU(J ) and SU(J ′) are
conjugate iff J ′ can be obtained from J by a simultaneous permutation of k and m.

Remark. U(J ) is the image of the restriction of (56) to U(k1)× · · · × U(kr). If we identify
C
ki ⊗ C

mi ∼= C
kimi ,

(
c1, . . . , cki

)⊗ (d1, . . . , dmi
) 
→ (

c1d1, . . . , cki d1, . . . , c1dmi , . . . , cki dmi
)
,

the elements of U(J ) are given by matrices
D̃1 0 · · · 0
0 D̃2 · · · 0
...

...
. . .

...

0 0 · · · D̃r

 D̃i =


Di 0 · · · 0
0 Di · · · 0
...

...
. . .

...

0 0 · · · Di
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whereDi ∈ U(ki) and D̃i has dimensionmi . Then SU(J ) consists of all such matrices which
have determinant 1.

For later purposes, we introduce the following notation:

jJ : SU(J ) −→ U(J ) (embedding)
iJ : U(J ) −→ U(n) (embedding)

prM
J,i : MJ (C) −→ Mki (C) (projection onto the ith factor)

prU
J,i : U(J ) −→ U(ki) (projection onto the ith factor).

Let g denote the greatest common divisor of m and let m̃ = (m̃1, . . . , m̃r) be defined by
mi = gm̃i,∀i. For any D ∈ U(J ),

detU(n)(D) =
r∏
i=1

[
detU(ki )

(
prU
J,i(D)

)]mi
.

We can extract the gth root of the determinant by defining the Lie group homomorphism

λU
J : U(J ) −→ U(1) D 
→

r∏
i=1

[
detU(ki )

(
prU
J,i (D)

)]m̃i
.

Then

detU(n)(D) = [λU
J (D)

]g ∀D ∈ U(J ).

Since λU
J (SU(J )) = Zg ⊆ U(1), λU

J induces a homomorphism λS
J : SU(J ) → Zg . We have

the commutative diagram

SU(J )
jJ−→ U(J )

λSJ λUJ
| |↓ ↓

Zg −→
jg

U(1)

(57)

where jg denotes natural embedding.
Below we shall need the low dimensional homotopy groups of SU(J ). In dimension

k � 1, they can be derived in a standard way from the corresponding homotopy groups
of U(J )∼= U(k1) × · · · × U(kr) by means of the exact homotopy sequence of the SU(J )-
bundle detU(n) : U(J ) → U(1). In dimension k = 0 we have, by definition, π0(SU(J )) =
SU(J )/SU(J )0, where SU(J )0 denotes the connected component of the identity of SU(J ).
One can show SU(J )/SU(J )0 ∼= Zg, with the isomorphism being induced by λS

J , see [65,
lemma 5.2]. Thus

πk(SU(J )) =


Zg | k = 0
Z

⊕(r−1) | k = 1
πk(U(k1))⊕ · · · ⊕ πk(U(kr)) | k > 1.

(58)

6.2. Howe subbundles of SU(n)-bundles

In this subsection, let J ∈ K(n) be arbitrary but fixed. We are going to derive a classification,
up to isomorphy, of principal SU(J )-bundles over M in terms of appropriately chosen
characteristic classes. Recall that we assume dim(M) � 4. Then, on the level of these
classes, we shall obtain a characterization of those SU(J )-bundles which are reductions of a
given SU(n)-bundle P. In the following we use some facts from bundle theory as well as from
algebraic topology. For a brief account, see appendices A and B.
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Generally, each isomorphism class of principal SU(J )-bundles over M is in 1–1
correspondence to a homotopy class of maps from M to the classifying space BSU(J )
of SU(J ), its so-called classifying map. As usual, we denote the set of all homotopy
classes by [M,BSU(J )]. Due to the potentially complicated structure of the space
BSU(J ), [M,BSU(J )] is hardly tractable in full generality. However, we can use three major
inputs from algebraic topology to get control of it under our specific assumption dim(M) � 4.

First, assume that we are able to find a simpler space BSU(J )n and a map fn : BSU(J ) →
BSU(J )n such that the homomorphism induced by fn on homotopy groups is an isomorphism
in dimension k < n and surjective in dimension n. Then composition with fn defines a bijection
from [M,BSU(J )] onto [M,BSU(J )n], see [20, chapter VII]. We remark that BSU(J )n is
called an n-equivalent approximation of BSU(J ) and fn is called an n-equivalence.

Second, algebraic topology provides a method to successively construct n-equivalent
approximations, starting from n = 1: the method of Postnikov tower. It renders BSU(J )n
as an n-stage fibration over a point, where the fibre at stage k is given by the Eilenberg–
MacLane space K(πk(BSU(J )), k). This space is defined as a CW complex, up to homotopy
equivalence, by the property that its only nonvanishing homotopy group is πk(BSU(J )) in
dimension k. Recall that πk(BSU(J ))∼=πk−1(SU(J )). For the precise formulation of the
method see appendix B. For a detailed explanation as well as an application to standard
groups, we refer to [9].

Applying the method of the Postnikov tower to BSU(J ) up to stage 5 we obtain, see
[65, theorem 5.4],

BSU(J )5 = K(Zg, 1)×
r−1∏
j=1

K(Z, 2)×
r∗∏
j=1

K(Z, 4) (59)

where r∗ denotes the number of members ki > 1. For the convenience of the reader we give
the proof of (59) in appendix C. We note that the successive fibrations mentioned above turn
out to be trivial here, i.e. they are just direct products. As a consequence, we have a bijection

[M,BSU(J )] → [M,K(Zg, 1)] ×
r−1∏
i=1

[M,K(Z, 2)] ×
r∗∏
i=1

[M,K(Z, 4)]

f 
→ (
pr1 ◦ f5 ◦ f, {pr2i ◦ f5 ◦ f }r−1

i=1 , {pr4i ◦ f5 ◦ f }r∗
i=1

)
,

where f5 : BSU(J ) → BSU(J )5 is a 5-equivalence and the prij are the projections from
BSU(J )5 onto its factors.

To treat the factors on the rhs we use a third input from algebraic topology. We will
explain it for [M,K(Zg, 1)]. Namely, the theory of Eilenberg–MacLane spaces provides
the following relation between homotopy and cohomology, see appendix B. There exists
γ1 ∈ H 1(K(Zg, 1),Zg) (the first Zg-valued cohomology group) such that the assignment

[M,K(Zg, 1)] → H 1(M,Zg) pr1 ◦ f5 ◦ f 
→ (pr1 ◦ f5 ◦ f )∗γ1 (61)

is a bijection. Here (pr1 ◦ f5 ◦ f )∗ denotes the homomorphisms induced in cohomology.
Writing (pr1 ◦ f5 ◦ f )∗γ1 = f ∗(pr1 ◦ f5)

∗γ1, we observe that the bijection (61) is
characterized by the image under f ∗ of the fixed element (pr1 ◦ f5)

∗γ1 of H 1(BSU(J ),Zg).
Thus, if for given maps f, f ′ : M → BSU(J ) the induced homomorphisms f ∗, f ′∗ :
H 1(BSU(J ),Zg) → H 1(M,Zg) coincide then the maps pr1 ◦ f5 ◦ f and pr1 ◦ f5 ◦ f ′

are homotopic. Analogously, one finds for k = 2, 4 that if the induced homomorphisms
f ∗, f ′∗ : Hk(BSU(J ),Z) → Hk(M,Z) coincide then prki ◦ f5 ◦ f and prki ◦ f5 ◦ f ′ are
homotopic, for all admissible i. Thus, considering that (60) is a bijection, we arrive at
the following result: Two maps f, f ′ : M → BSU(J ) are homotopic if they induce the
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same homomorphisms on the cohomology groups H 1(BSU(J ),Zg),H 2(BSU(J ),Z) and
H 4(BSU(J ),Z). Thus, to characterize homotopy classes of maps M → BSU(J ), as usual,
we have to determine a set of generators for these cohomology groups and to evaluate f ∗ on
them. In this way, a set of characteristic classes is associated with any element of [M,BSU(J )],
hence to any SU(J )-bundle through its classifying map. This set is complete in the sense that
coincidence of characteristic classes implies isomorphy of the corresponding bundles.

To construct a set of generators, we use the commutative diagram (57), which on the level
of classifying spaces reads

BSU(J )
BjJ−−→ BU(J )

BλS
J BλU

J
| |↓ ↓

BZg −−→
Bjg

BU(1)

. (62)

First, consider the Z-valued cohomology. Recall that the cohomology algebraH ∗(BU(ki),Z)
is generated freely over Z by elements γ (2j)U(ki)

∈ H 2j (BU(ki),Z), j = 1, . . . , ki , see [13]. We
denote

γU(ki) = 1 + γ (2)U(ki )
+ · · · + γ (2ki)U(ki )

. (63)

The generators γ (2j)U(ki )
define elements

γ̃
(2j)
J,i = (BprU

J,i

)∗
γ
(2j)
U(ki )

(64)

γ
(2j)
J,i = (BjJ )∗ γ̃

(2j)
J,i (65)

of H 2j (BU(J ),Z) and H 2j (BSU(J ),Z), respectively. We denote

γ̃ J,i = 1 + γ̃ (2)J,i + · · · + γ̃ (2ki)J,i γ̃ J = (γ̃ J,1, . . . , γ̃ J,r ) (66)

γJ,i = 1 + γ (2)J,i + · · · + γ (2ki)J,i γJ = (γJ,1, . . . , γJ,r ). (67)

It is a direct consequence of the Künneth theorem for cohomology that the cohomology algebra
H ∗(BU(J ),Z) is freely generated over Z by the elements γ̃ (2j)J,i , j = 1, . . . , ki, i = 1, . . . , r .
Moreover, considering that BjJ : BSU(J ) → BU(J ) is a U(1)-bundle and, therefore,
induces a Gysin sequence one can show that (BjJ )∗ is surjective, see [65, lemma 5.7].
Thus, the cohomology algebra H ∗(BSU(J ),Z) is generated over Z by the elements
γ
(2j)
J,i , j = 1, . . . , ki , i = 1, . . . , r . We remark that the generators γ (2)J,i ofH ∗(BSU(J ),Z) are

subject to a relation, which is however irrelevant for our purposes, because it follows from
another relation to be derived below.

Next, we have to consider H 1(BSU(J ),Zg). We note the following facts:

(i) The induced homomorphism
(
BλS

J

)∗
: H 1(BZg,Zg) → H 1(BSU(J ),Zg) is an

isomorphism. This follows by virtue of the Hurewicz and universal coefficient
theorems from the obvious fact that λS

J induces an isomorphism of homotopy groups
π0(SU(J )) → π0(Zg).

(ii) From the (long) exact sequence induced by the short exact sequence of coefficient groups
0 → Z → Z → Zg → 0 one can read off that the associated Bockstein homomorphism
βg : H 1(BZg,Zg) → H 2(BZg,Z) is an isomorphism.

(iii) The surjectivity of BjJ , mentioned above, implies, in particular, surjectivity of the
homomorphism (Bjg)∗ : H 2(BU(1),Z) → H 2(BZg,Z).
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It follows that H 1(BSU(J ),Zg) is generated by the single element

δJ := (BλS
J

)∗
β−1
g (Bjg)

∗γ (2)U(1). (68)

Finally, the commutative diagram (62) induces a relation between the generators γ (2)J,i and δJ .
To formulate it, we introduce the following notation. For any topological space X and any
sequence of nonnegative integers b = (b1, . . . , bs), define a polynomial function

Eb :
s∏
i=1

H even(X,Z) → H even(X,Z) (α1, . . . , αs) 
→ α
b1
1 . . . α

bs
s . (69)

One can check the following formulae for the components of Eb in degree 2 and 4:

E
(2)
b (α) =

s∑
i=1

biα
(2)
i (70)

E
(4)
b (α) =

s∑
i=1

biα
(4)
i +

s∑
i=1

bi(bi − 1)

2
α
(2)
i α

(2)
i +

s∑
i<j=2

bibjα
(2)
i α

(2)
j . (71)

A straightforward computation, see [65, lemma 5.12], yields(
BλU

J

)∗
γ
(2)
U(1) = E

(2)
m̃ (γ̃ J ). (72)

Then the commutative diagram (62) implies

E
(2)
m̃ (γJ ) = (BjJ )

∗ E(2)m̃ (γ̃ J ) = (BjJ )
∗ (BλU

J

)∗
γ
(2)
U(1) = (BλS

J

)∗
(Bjg)

∗γ (2)U(1).

Thus, by definition of δJ , the relation is

E
(2)
m̃ (γJ ) = βg(δJ ). (73)

The generators γ (2j)J,i , δJ constructed above define the following characteristic classes for
SU(J )-bundles Q over M:

ξJ (Q) := (fQ)
∗δJ

α
(2j)
J,i (Q) := (fQ)

∗γ (2j)J,i j = 1, . . . , ki i = 1, . . . , r.

Here fQ denotes the classifying map of Q. We denote αJ,i = 1 + α(2)J,i + · · · + α(2ki )J,i and
αJ = (αJ,1, . . . , αJ,r ). Due to (73), αJ and ξJ are subject to the relation

E
(2)
m̃ (αJ (Q)) = βg(ξJ (Q)). (74)

By construction, the characteristic classes so defined have the following interpretation
in terms of ordinary characteristic classes of certain bundles naturally associated with Q.
First, by extending the structure group of Q to U(J ) we obtain a U(J )-bundle Q̃. Since
U(J )∼= U(k1) × · · · × U(kr), Q̃ decomposes into a Whitney product of U(ki)-bundles Q̃i .
Formally, Q̃i is given by the associated bundleQ×SU(J )U(ki), where SU(J ) acts via prU

J,i ◦jJ
by left multiplication on U(ki). Hence, its classifying map is BprU

J,i ◦ BjJ ◦ fQ, see formula
(A.3) in appendix A. Using this, a standard calculation yields

αJ,i(Q) = c(Q̃i) (75)

where c denotes the total Chern class. Second, factorizing Q by SU(J )0, the connected
component of the identity of SU(J ), we obtain a Zg-bundle Q0. It is given by the associated
bundleQ×SU(J ) Zg , where SU(J ) acts on Zg via the homomorphism λS

J . Then formula (A.3)
implies that Q0 has classifying map BλS

J ◦ fQ. This allows calculation of

ξJ (Q) = χg(Q0) (76)

where χg is a (suitably chosen) generating characteristic class for Zg-bundles over M.



Topical Review R27

We remark that the commutative diagram (57) implies that extension of Q0 to structure
group U(1) and factorization of Q̃ by SU(J )0 yield isomorphic U(1)-bundles. In this way, the
relation (74) expresses itself on the level of the associated bundles.

So far, we have found that the classes αJ and ξJ assign to any SU(J )-bundle Q over M
an element of the set

K(M, J ) =
(α, ξ) ∈

r∏
i=1

ki∏
j=1

H 2j (M,Z)×H 1(M,Zg)
∣∣E(2)m̃ (α) = βg(ξ)

 .
We already know that αJ (Q) = αJ (Q

′) and ξJ (Q) = ξJ (Q
′) imply Q ∼= Q′. Thus, for

K(M, J ) to be a classifying set for SU(J )-bundles it remains to prove that for any of its
elements a bundle with the corresponding characteristic classes exists. Thus, let (α, ξ) be
given. There exist

(i) U(ki)-bundles Q̃i such that c(Q̃i) = αi . Their Whitney product defines a U(J )-bundle
Q̃.

(ii) a Zg-bundleQ0 such that χg(Q0) = ξ .

The defining relation of K(M, J ) ensures that Q0 is a reduction of the quotient bundle
Q̃/SU(J )0, see [65, lemma 5.15]. Then the pre-image Q ofQ0 in Q̃ is an SU(J )-bundle. By
construction, (75) and (76) hold. Hence, we have αJ (Q) = α and ξJ (Q) = ξ .

We summarize.

Theorem 6.1. Let M be a manifold, dimM � 4, and let J ∈ K(n). Then the characteristic
classes αJ and ξJ define a bijection from isomorphism classes of principal SU(J )-bundles
over M onto K(M, J ).

Next, we have to characterize the SU(J )-bundles Q that are reductions of a given SU(n)-
bundle P. Evidently, Q ⊆ P iff P can be obtained from Q by extending the structure group
to SU(n), or iff the extensions of P and Q̃ to structure group U(n) coincide. A standard
calculation yields that the total Chern class of the extension of Q̃ is given by Em(αJ (Q)).
Thus, using the notation

K(P, J ) = {(α, ξ) ∈ K(M, J ) |Em(α) = c(P )}
we have

Theorem 6.2. Let P be a principal SU(n)-bundle over a manifold M, dimM � 4, and let
J ∈ K(n). Then the characteristic classes αJ , ξJ define a bijection from isomorphism classes
of reductions of P to the subgroup SU(J ) onto K(P, J ).

The equation Em(α) = c(P ) actually contains the two equations E(2)m (α) = 0 and
E
(4)
m (α) = c2(P ). However, under the assumption (α, ξ) ∈ K(M, J ), the first one is redundant,

because due to (70), E(2)m (α) = gE
(2)
m̃ (α) = gβg(ξ) = 0. Thus, the relevant equations are

E
(2)
m̃ (α) = βg(ξ) (77)

E(4)m (α) = c2(P ). (78)

The set of solutions of (77) yields K(M, J ), the set of solutions of both equations (77) and
(78) yields K(P, J ).

This concludes the classification of Howe subbundles of P, i.e. step 2 of our programme.
We have found that, up to the principal action of SU(n), the Howe subbundles are given by
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triples (J ; α, ξ), where J ∈ K(n) and (α, ξ) ∈ K(P, J ). For further use, let us denote the set
of all such triples by K(P ). It may be viewed as the disjoint union of all K(P, J ), J ∈ K(n).
Moreover, for given L ∈ K(P ), L = (J ; α, ξ), let QL denote the corresponding Howe
subbundle. That is, QL is the reduction of P to SU(J ) which has characteristic classes
αJ (QL) = α and ξJ (QL) = ξ . It is unique up to isomorphy.

6.3. Examples

We determine K(P, J ) for several specific values of J and for base manifolds M =
S4,S2 × S2,T4, and L3

p × S1. Here L3
p denotes the three-dimensional lens space which

is defined to be the quotient of the restriction of the natural action of U(1) on the sphere
S3 ⊂ C

2 to the subgroup Zp. Note that L3
p is orientable.

Let us derive the respective Bockstein homomorphisms βg : H 1(M,Zg) → H 2(M,Z).
Since the Abelian groupH 1(M,Zg) has vanishing free part and since for products of spheres
the integer-valued second cohomology is free Abelian, the Bockstein homomorphism is trivial
here. For M = L3

p × S1, on the other hand, let γ (1)L3
p;Zg and γ (1)S1 be generators of H 1

(
L3
p,Zg

)
and H 1(S1,Z), respectively. One has H 1

(
L3
p × S1,Zg

) = Z〈p,g〉 ⊕ Zg, where 〈p, g〉 denotes

the greatest common divisor of p and g. Here the first factor is generated by γ (1)L3
p;Zg × 1S1 and

the second one by 1L3
p;Zg × γ

(1)
S1 . In terms of these generators and an appropriately chosen

generator γ (2)L3
p;Z of H 2

(
L3
p,Z

)∼= Zp, the Bockstein homomorphism is

βg

(
γ
(1)
L3
p;Zg × 1S1

)
= p

〈p, g〉 γ
(2)
L3
p;Z × 1S1 βg

(
1L3

p;Zg × γ
(1)
S1

)
= 0. (79)

Now we discuss specific J . We write them in the form J = (k1, . . . , kr |m1, . . . ,mr).

Example 1. J = (1|n) ∈ K(n). Here SU(J ) = Zn, the centre of SU(n). Moreover, g = n.
The variables are ξ ∈ H 1(M,Zn) and α = 1 + α(2), α(2) ∈ H 2(M,Z). The system of
equations (77) and (78) reads

α(2) = βn(ξ) (80)

n(n− 1)

2
(α(2))2 = c2(P ). (81)

Equation (80) yields nα(2) = 0, so that equation (81) requires c2(P ) = 0. Thus, K(P, J ) is
nonempty iff P is trivial and is then parametrized by ξ . This coincides with what is known
about Zn-reductions of SU(n)-bundles.

Example 2. J = (n|1) ∈ K(n). Here SU(J ) = SU(n), the whole group. Due to g = 1, the
only variable is α = 1 + α(2) + α(4). Equations (77) and (78) read α(2) = 0 and α(4) = c2(P ),

respectively. Thus, K(P, J ) consists of P itself.

Example 3. J = (1, 1|2, 2) ∈ K(4). Here g = 2. One can check that SU(J ) has connected
components {diag(z, z, z−1, z−1)|z ∈ U(1)} and {diag(z, z,−z−1,−z−1)|z ∈ U(1)}. It is
therefore isomorphic to U(1)× Z2. The variables are ξ ∈ H 1(M,Z2) and αi = 1 + α(2)i , i =
1, 2. The system of equations under consideration is

α
(2)
1 + α(2)2 = β2(ξ) (82)(
α
(2)
1

)2
+
(
α
(2)
2

)2
+ 4α(2)1 α

(2)
2 = c2(P ). (83)
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We solve equation (82) w.r.t. α(2)2 and insert it into equation (83). Since, due to compactness
and orientability of M,H 4(M,Z) is torsion-free, products including β2(ξ) vanish. Thus, we
obtain that ξ can be chosen arbitrarily, whereas α(2)1 must solve the equation

−2
(
α
(2)
1

)2
= c2(P ). (84)

Let us discuss the result for the different base manifolds.

(i) M = S4: due toH 1(M,Z2) = 0 andH 2(M,Z) = 0,K(P, J ) is nonempty iff c2(P ) = 0,
in which case it contains the (necessarily trivial) U(1)× Z2-bundle over S4.

(ii) M = L3
p × S1: we have H 1(M,Z2) ∼= Z〈2,p〉 ⊕ Z2 and H 2(M,Z)∼= Zp. In particular,(

α
(2)
1

)2 = 0. Hence, if c2(P ) = 0,K(P, J ) = (
Z〈2,p〉 ⊕ Z2

) × Zp. Otherwise,
K(P, J ) = ∅.

(iii) M = S2 × S2: we haveH 1(M,Z2) = 0 and H 2(M,Z)∼= Z ⊕ Z. The latter is generated
by γ (2)S2 × 1S2 and 1S2 × γ

(2)
S2 , where γ (2)S2 is a generator of H 2(S2,Z). Then H 4(M,Z) is

generated by γ (2)S2 × γ
(2)
S2 . Writing

α
(2)
1 = aγ

(2)
S2 × 1S2 + b 1S2 × γ

(2)
S2 (85)

with a, b ∈ Z, equation (84) becomes

−4abγ (2)S2 × γ
(2)
S2 = c2(P ). (86)

If c2(P ) = 0, there are two series of solutions: a = 0 and b ∈ Z as well as a ∈ Z

and b = 0. Here K(P, J ) is infinite. If c2(P ) = 4lγ (2)S2 × γ
(2)
S2 , l �= 0, then a = q

and b = −l/q , where q runs through the (positive and negative) divisors of l. Hence, in
this case, the cardinality of K(P, J ) is twice the number of divisors of l. If c2(P ) is not
divisible by 4 then K(P, J ) = ∅.

(iv) M = T4: here H 1(M,Z2) ∼= Z
⊕4
2 and H 2(M,Z) ∼= Z

⊕6. The latter is generated by
elements γ (2)T4;ij , 1 � i < j � 4, where γ (2)T4;12 = γ

(1)
S1 × γ

(1)
S1 × 1S1 × 1S1 , γ

(2)
T4;13 =

γ
(1)
S1 × 1S1 × γ

(1)
S1 × 1S1 etc. H 4(M,Z) is generated by γ (4)T4 = γ

(1)
S1 × γ

(1)
S1 × γ

(1)
S1 × γ

(1)
S1 .

One can check γ (2)T4;ij γ
(2)
T4;kl = εijkl γ

(4)
T4 , where εijkl denotes the totally antisymmetric

tensor in four dimensions. Writing α(2)1 =∑1�i<j�4 aijγ
(2)
T4;ij , equation (84) becomes

−4 (a12a34 − a13a24 + a14a23) γ
(4)
T4 = c2(P ).

Hence, again K(P, J ) �= ∅ iff c2(P ) is divisible by 4, in which case now it always has
infinitely many elements.

Example 4. J = (1, 1 | 2, 3) ∈ K(5). The subgroup SU(J ) of SU(5) consists of matrices of
the form diag(z1, z1, z2, z2, z2), where z1, z2 ∈ U(1) such that z2

1 z
3
2 = 1. We can parametrize

z1 = z3, z2 = z−2, z ∈ U(1). Hence, SU(J ) is isomorphic to U(1). The variables are
αi = 1 + α(2)i , i = 1, 2. The equations to be solved read

2α(2)1 + 3α(2)2 = 0 (87)(
α
(2)
1

)2
+ 3
(
α
(2)
2

)2
+ 6α(2)1 α

(2)
2 = c2(P ). (88)

Equation (87) can be parametrized by α(2)1 = 3η, α(2)2 = −2η, where η ∈ H 2(M,Z). Then
(88) becomes −15η2 = c2(P ). The discussion of this equation is analogous to that of
equation (84) above. For example, in the case M = S2 × S2,K(P, J ) �= ∅ iff c2(P ) is
divisible by 15.
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Example 5. J = (2, 3|1, 1) ∈ K(5). Here SU(J ) ∼= S[U(2)× U(3)]. This is the symmetry
group of the standard model. In the grand unified SU(5)-model it is the subgroup to which
SU(5) is broken by the heavy Higgs field. Moreover, it is the centralizer of the subgroup
discussed in example 4.

Since g = 1, the variables are αi = 1 +α(2)i +α(4)i , i = 1, 2. Equations (77) and (78) read

α
(2)
1 + α(2)2 = 0 (89)

α
(4)
1 + α(4)2 + α(2)1 α

(2)
2 = c2(P ). (90)

Using (89) to replace α(2)2 in (90) we obtain for the latter α(4)2 = c2(P )− α
(4)
1 +

(
α
(2)
1

)2
. Thus,

K(P, J ) can be parametrized by α1 (or α2), i.e. by the Chern class of one of the factors U(2)
or U(3). This is well known [50].

Example 6. J = (2|2). We have g = 2. The subgroup SU(J ) of SU(4) consists of
matrices D ⊕ D, where D ∈ U(2) such that (detD)2 = 1. Hence, it has connected
components {D ⊕ D|D ∈ SU(2)} and {(iD) ⊕ (iD)|D ∈ SU(2)}. One can check that
SU(J )∼= (SU(2)× Z4)/Z2. The variables are ξ ∈ H 1(M,Z2) and α = 1 + α(2) + α(4). The
equations under consideration are

α(2) = β2(ξ) (91)(
α(2)
)2

+ 2α(4) = c2(P ). (92)

Equation (91) fixes α(2) in terms of ξ . For example, in the case M = L3
p × S1, by expanding

ξ = ξL γ
(1)
L3
p;Z2

× 1S1 + ξS1L3
p;Z2 × γ

(1)
S1 , equations (79) and (91) imply

α(2) =
{
qξL γ

(2)
L3
p;Z × 1S1 | p = 2q

0 | p = 2q + 1.

For general M, due to (91), equation (92) becomes 2α(4) = c2(P ). Thus, K(P, J ) is nonempty
iff c2(P ) is even and is then parametrized by ξ ∈ H 1(M,Z2).

6.4. Holonomy-induced Howe subbundles and factorization by SU(n)-action

In this subsection, we will accomplish steps 3 and 4 of our programme.
In step 3, we have to specify those reductions Q ⊆ P to SU(J ), J ∈ K(n), which are

holonomy-induced, i.e. which possess a connected reduction to some subgroup H such that
C2

SU(n)(H) = SU(J ). Let Q be given and consider a connected component of Q. This is
a connected reduction of Q to some subgroup H ⊆ SU(J ) which has the same dimension
as SU(J ). Then so has the Howe subgroup H̃ := C2

SU(n)(H) generated by H, because
H ⊆ H̃ ⊆ SU(J ). Then the Howe subgroups C2

U(n)(H̃ ) and C2
U(n)(SU(J )) of U(n) have the

same dimension and obey C2
U(n)(H̃ ) ⊆ C2

U(n)(SU(J )). Since they are closed and connected
(recall that they are conjugate to U(J ) for some J ∈ K(n)), they coincide. It follows
H̃ = SU(J ). We conclude that any Howe subbundle of an SU(n)-bundle is holonomy-
induced, so that the condition is redundant here.

We remark that, in general, Howe subbundles exist which are not holonomy-induced.
A simple example is provided by the Howe subgroup H = {13, diag(−1,−1, 1)} of SO(3).
While the reductionQ = M×H ⊆ M×SO(3) is a Howe subbundle, any connected reduction
of Q has the centre {13} as its structure group, hence is a Howe subbundle itself. Thus, Q is
not holonomy-induced.
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In step 4, we have to factorize the set of Howe subbundles by the principal action of
SU(n). That is, we have to identify elements L,L′ of K(P ) for whichD ∈ SU(n) exists such
that

QL′ ∼=QL ·D. (93)

First, assume that such D exists. Then SU(J ′) = D−1SU(J )D, hence MJ ′(C) =
D−1MJ (C)D. It follows that r = r ′ and there exists a permutation σ such that

k′ = σk m′ = σm. (94)

A straightforward calculation, see [65, lemma 7.1] yields

αJ ′(QL ·D) = σα ξJ ′ (QL ·D) = ξ. (95)

Hence, (93) implies

α′ = σα ξ ′ = ξ. (96)

Conversely, assume that r = r ′ and that a permutation exists such that (94) and (96) hold. Due
to (94) one can constructD ∈ SU(n) such that conjugation of MJ (C) byD−1 yields MJ ′(C),
where the factors are permuted according to σ , see [65, lemma 4.2]. Then (95) and (96) imply
αJ ′(QL ·D) = α′ and ξJ ′(QL ·D) = ξ ′. Hence, (93) holds. Note that (93) is actually a special
case of a more general situation discussed in subsection 7.1.

Thus, on the level of K(P ), factorization by the principal SU(n)-action on Howe
subbundles amounts to the identification of elements which can be transformed to each other
by a simultaneous permutation of k,m and α. The set of equivalence classes so obtained will
be denoted by K̂(P ) and its elements will be denoted by [L].

6.5. Summary

Before we proceed, we summarize the results of this section. The set of Howe subbundles of
P modulo isomorphy and the principal SU(n)-action, which classifies the orbit types of the
action of G on C by virtue of the reduction theorem, can be described as follows. Its elements
are labelled by symbols [J ; α, ξ ], where

(i) J = ((k1, . . . , kr), (m1, . . . ,mr)) is a pair of sequences of positive integers obeying∑r
i=1 kimi = n,

(ii) α = (α1, . . . , αr ) is a sequence of cohomology elements αi ∈H ∗(M,Z), which are
admissible values of the total Chern class of U(ki)-bundles over M,

(iii) ξ ∈ H 1(M,Zg) with g being the greatest common divisor of (m1, . . . ,mr). The
cohomology elements αi and ξ are subject to the relations

r∑
i=1

mi

g
α
(2)
i = βg(ξ)

α
m1
1 . . . αmrr = c(P )

where βg : H 1(M,Zg) → H 2(M,Z) is the connecting homomorphism associated with
the short exact sequence 0 → Z → Z → Zg → 0 of coefficient groups in cohomology.
For any permutation σ of r elements, the symbols

[((k1, . . . , kr), (m1, . . . ,mr)) ; (α1, . . . , αr ), ξ ][((
kσ(1), . . . , kσ(r)

)
,
(
mσ(1), . . . , mσ(r)

)) ; (ασ(1), . . . , ασ(r)) , ξ]
have to be identified.
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7. Partial ordering of gauge orbit types for G = SU(n)

7.1. Characterization of the partial ordering relation

In this subsection we are going to characterize the natural partial ordering of Howe subbundles
in terms of the classifying set K̂(P ). Thus, let L,L′ ∈ K(P ). By definition, [L] � [L′] iff
D ∈ SU(n) exists such that QL ·D ⊆ QL′ , where inclusion is understood up to isomorphy.
We say that QL is subconjugate to QL′ .

First, we observe thatQL ·D ⊆ QL′ impliesD−1SU(J )D ⊆ SU(J ′), i.e. subconjugacy of
the structure groups. Then also D−1MJ (C)D ⊆ MJ ′(C). We have an associated embedding

hM
D : MJ (C) −→ MJ ′(C) C 
→ D−1CD

and, derived from that, embeddings hU
D : U(J ) −→ U(J ′) and hS

D : SU(J ) −→ SU(J ′).
Since MJ (C) and MJ ′(C) are finite-dimensional unital C∗-algebras, the embedding hM

D

is characterized by a so-called inclusion matrix �. This is an (r ′ × r)-matrix with
nonnegative integer entries, defined as follows: �i′i is the number of fundamental irreducible
representations contained in the representation

Mki (C) −→ MJ (C)
hM
D−→ MJ ′(C)

prM
J ′,i′−→ Mk′

i′
(C).

Here the first map is the canonical embedding to the ith factor of MJ (C). Since the
embedding hM

D is unital,
∑

i �i′iki = k′
i′ , for all i ′. Since conjugation of MJ (C) by D−1

preserves the total number of fundamental irreducible representations of the factor Mki (C) in
Mn(C),

∑
i′ �i′im

′
i′ = mi , for all i. Thus,� solves the system of equations

�k = k′ (97)

m = m′� (98)

where m and m′ are viewed as row vectors. Conversely, assume that a solution� of (97) and
(98) is given. Then the decompositions (55) associated with J and J ′ admit subdecompositions

C
n =

r⊕
i=1

C
ki ⊗

(
r ′⊕
i′=1

C
�i′ i ⊗ C

m′
i′

)

C
n =

r ′⊕
i′=1

(
r⊕
i=1

C
ki ⊗ C

�i′ i

)
⊗ C

m′
i′

respectively, which differ by a permutation of the factors C
ki ⊗ C

�i′ i ⊗ C
m′
i′ . From this

permutation,D ∈ SU(n) can be constructed which obeysD−1MJ (C)D ⊆ MJ ′(C) and which
has inclusion matrix�, see [66, lemma 3.1]. It follows that SU(J ) is subconjugate to SU(J ′),
or MJ (C) is subconjugate to MJ ′(C), iff the system of equations (97), (98) has a solution�.

Second, letQD
L denote the extension ofQL ·D to structure group SU(J ′). We observe that

QL ·D ⊆ QL′ implies QD
L

∼=QL′ . This provides a relation between the characteristic classes
α, ξ and α′, ξ ′. To derive it, we have to compute the characteristic classes of QD

L . Let us
sketch how this can be done. For a detailed computation, purely on the level of cohomology,
we refer to [66, lemma 3.2].

To compute αJ ′
(
QD
L

)
we may form the extension Q̃D

L ofQD
L to structure group U(J ′) and

compute the total Chern class of the Whitney factors. To do so, we use that Q̃D
L coincides

with the extension Q̃
D

L of Q̃L ·D to structure group U(J ′). A close look at how hU
D embeds

the factors of U(J ) into those of U(J )′ reveals that the i ′th Whitney factor of Q̃
D

L contains the
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Whitney product (Q̃L)
�i′1
1 × · · · × (Q̃L)

�i′r
r as a subbundle. Hence, the total Chern class of

this factor is α�i′1
1 · · ·α�i′r

r . Using the notation

E�(α) =
(
α
�11
1 · · ·α�1r

r , . . . , α
�r′1
1 · · ·α�r′ r

r

)
which is a generalization of (69), we can write

αJ ′
(
QD
L

) = E�(α). (99)

To determine ξJ ′
(
QD
L

)
, we can compute the class χg′ of the quotient QD

L

/
SU(J ′)0. The

latter is given by the associated bundle QL ×SU(J ) Zg′ , where SU(J ) acts on Zg′ via the
homomorphism λS

J ′ ◦ hS
D . A straightforward computation yields λS

J ′ ◦ hS
D = g′ ◦ λS

J , where
g′ denotes reduction modulo g′. Note that (98) implies that g′ divides g, hence g′ is a
well-defined homomorphism. Moreover, one can check that the characteristic class of the
mod g′-reduction of a Zg-bundle is given by the mod g′-reduction of the characteristic class
of this bundle. Hence

ξJ ′
(
QD
L

) = g′(ξ). (100)

Thus,QL ·D ⊆ QL′ implies

E�(α) = α′ (101)

g′(ξ) = ξ ′. (102)

Let us introduce the following notation. If (102) holds, let N(L,L′) be the set of solutions
of the combined system of equations (97), (98), (101) in the indeterminate �. If (102) does
not hold, let N(L,L′) = ∅. So far, we have found that if QL is subconjugate to QL′ then
N(L,L′) �= ∅. Now assume that, conversely, N(L,L′) contains an element�. We have seen
above that due to (97), (98) there existsD ∈ SU(n), obeyingD−1MJ (C)D ⊆ MJ ′(C), which
has inclusion matrix�. ConsiderQD

L , i.e. the extension ofQL ·D to structure group SU(J ′).
Due to (99) and (101), αJ ′

(
QD
L

) = α′. Due to (100) and (102), ξJ ′
(
QD
L

) = ξ ′. It follows
QD
L

∼=QL′ , hence QL · D ⊆ QL′ . Thus, we have shown that QL is subconjugate to QL′ iff
N(L,L′) �= ∅. Consequently, on the level of K̂(P ), the partial ordering of Howe subbundles
is given by

Theorem 7.1. Let L,L′ ∈ K(P ). Then [L] � [L′] if and only if N(L,L′) �= ∅.

Example. Let P = M × SU(4). Consider elements L,L′ with J = ((1, 1), (2, 2)) and
J ′ = ((2, 2), (1, 1)), respectively. Recall that SU(J )∼= U(1)× Z2. The subgroup SU(J ′) can
be parametrized as follows:

SU(J ′) =
{(

zA 0
0 z−1B

)∣∣∣∣ z ∈ U(1), A,B ∈ SU(2)

}
.

It is therefore isomorphic to [U(1) × SU(2) × SU(2)]/Z2. To determine N(L,L′), we first
consider equations (97) and (98):(

�11 �12

�21 �22

)(
1
1

)
=
(

2
2

)
(1 1)

(
�11 �12

�21 �22

)
= (2 2).

The solutions are

�a =
(

1 1
1 1

)
�b =

(
2 0
0 2

)
�c =

(
0 2
2 0

)
.

Forα = (α1, α2), they yieldE�a (α) = (α1α2, α1α2), E�b(α) = (α2
1, α

2
2

)
, E�c (α) = (α2

2, α
2
1

)
.

Condition (102) is trivially satisfied due to g′ = 1. Thus, N(L,L′) �= ∅, i.e.QL is subconjugate
to QL′ or [L] � [L′], precisely in one of the following cases: (a) α′

1 = α′
2 = α1α2,

(b) α′
1 = α2

1, α
′
2 = α2

2 and (c) α′
1 = α2

2, α
′
2 = α2

1 .
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Remark. Any inclusion matrix can be visualized by a diagram consisting of a series of upper
vertices, labelled by i = 1, . . . , r , and a series of lower vertices, labelled by i ′ = 1, . . . , r ′.
For each combination of i and i ′ the corresponding vertices are connected by �i′i edges.
For example, the matrices �a,�b, and �c in the above example give rise to the following
diagrams:

�a:

�

�

i

i′

�

�

1

1

�

�
�
� �

2

�

�
�

��

2�

�

�b:

�

�

i

i′

�

�

1

1

�

�

2

2

�c:

�

�
�
�

�
�
�

�

i �

�
�

�

�
�

� �
i′

�

�
�
�

�
�
�

�

1

2

�

�
�

�

�
�

� �

2

1

.

The diagrams associated in this way with the elements of N(J, J ′), J, J ′ ∈ K(n), are special
cases of so-called Bratteli diagrams [18]. The latter have, in general, several stages picturing
the subsequent inclusion matrices associated with an ascending sequence of finite dimensional
von Neumann algebras A1 ⊆ A2 ⊆ A3 ⊆ · · ·. For this reason, we refer to the diagram
associated with � ∈ N(J, J ′) as the Bratteli diagram of �. We remark that, due to equation
(97),� cannot have a zero row. Due to (98), it cannot have a zero column either. Accordingly,
each vertex of the Bratteli diagram of� is cut by at least one edge. Since equations (97), (98),
(101) have an obvious reformulation on the level of Bratteli diagrams, these diagrams can be
used to simplify calculations. Furthermore, some of the arguments in the sequel are easier to
formulate on the level of Bratteli diagrams than on the level of the corresponding matrices.

7.2. Direct successors

In this subsection we derive a characterization of direct successors. For a detailed discussion
we refer to [66, section 5].

LetL,L′ ∈ K(P ) such that [L] � [L′]. It is not hard to see that under this assumption [L′]
is a direct successor of [L] iff [SU(J ′)] is a direct successor of [SU(J )] in the set of conjugacy
classes of Howe subgroups of SU(n), or iff [MJ ′(C)] is a direct successor of [MJ (C)] in the
set of conjugacy classes of unital ∗-subalgebras of Mn(C). It is known by ‘folklore’—and
can be proved using the notion of the level of an inclusion matrix, see [66]—that [MJ ′(C)]
is a direct successor of [MJ (C)] iff the following holds: there exists D ∈ SU(n) obeying
D−1MJ (C)D ⊆ MJ ′(C), where the Bratteli diagram of the corresponding inclusion matrix
has either one of the following shapes with arbitrary i0 and i1 < i2:

�

�

1

1

· · ·

· · ·

�

�

i1−1

i1−1

�

�
�
��

�

i1

i1 +1

· · ·

· · ·

�

�
�
��

�

i0−1

i0

�
�

�
�

�
���

i0

i1

�
�������� �

i2

�

�

i0 +1

i0 +1

· · ·

· · ·

�

�

i2−1

i2−1

�

�
�
��

�

i2

i2 +1

· · ·

· · ·

�

�
�
��

�

r

r+1

(103)

�

�

1

1

· · ·

· · ·

�

�

i1−1

i1−1

�
�

�
�

�
�� �

i1

i0

�

�
�

��
�

i1 +1

i1

· · ·

· · ·

�

�
�

��
�

i0

i0−1

�

�

i0 +1

i0 +1

· · ·

· · ·

�

�

i2−1

i2−1

�
���������

i2
�

�
�

��
�

i2 +1

i2

· · ·

· · ·

�

�
�

��
�

r

r−1

. (104)
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Thus, if [L′] is a direct successor of [L] then N(L,L′) contains an element with Bratteli diagram
(103) or (104). Conversely, if N(L,L′) contains such an element � then [L] � [L′]. As
noted above, there exists D ∈ SU(n), obeying D−1MJ (C)D ⊆ MJ ′(C), which has inclusion
matrix �. Since the Bratteli diagram of � is of the form (103) or (104), [MJ ′(C)] is a direct
successor of [MJ (C)]. Thus, [L′] is a direct successor of [L]. It follows

Theorem 7.2. LetL,L′ ∈ K(P ). Then [L′] is a direct successor of [L] if and only if N(L,L′)
contains an element with Bratteli diagram (103) or (104) for some i0 and i1 < i2.

7.3. Generation of direct successors and direct predecessors

In this subsection, we sketch how to derive operations to create the direct successors and the
direct predecessors of a given element of K̂(P ). Again, for a detailed discussion we refer to
[66], sections 5 and 6.

In view of theorem 7.2, to determine all direct successors of a given element [L] of K̂(P ),
we have to go through all the diagrams (103) and (104) and find all L′ that obey (102) as well
as the system of equations (97), (98), (101) with L being some representative of [L] and �
being given by the corresponding diagram. Of course, the amount of work can be reduced by
observing that

(i) consideration of one representative L is sufficient,
(ii) diagrams that differ only by a permutation of the lower vertices yield equivalentL′, hence

identical direct successors.

It follows that the diagrams to be considered are

�

�

1

1

· · ·

· · ·

�

�

i0−1

i0−1

�

�

i0

i0

�

�
�
��

�
i0 +1

�

�
�
��

�

i0 +1

i0 +2

· · ·

· · ·

�

�
�
��

�

r

r+1

(105)

�

�

1

1

· · ·

· · ·

�

�

i1−1

i1−1

�

�

i1

i1

�

�

i1 +1

i1 +1

· · ·

· · ·

�

�

i2−1

i2−1

�
���������

i2
�

�
�

��
�

i2 +1

i2

· · ·

· · ·

�

�
�

��
�

r

r−1

(106)

for arbitrary i0 and i1 < i2, respectively. Taking this into account it can be easily seen that all
necessary L′ are generated from L by the following two kinds of operations:

Splitting: Choose i0 such that mi0 �= 1. Choose a decompositionmi0 = mi0,1 +mi0,2 with
strictly positive integersmi0,1,mi0,2. Define J ′ = (k′,m′) and α′ by

k′ = (k1, . . . , ki0−1, ki0 , ki0 , ki0+1, . . . , kr
)

m′ = (m1, . . . ,mi0−1,mi0,1,mi0,2,mi0+1, . . . ,mr
)

α′ = (α1, . . . , αi0−1, αi0 , αi0 , αi0+1, . . . , αr
)
.

Since the greatest common divisor g′ of m′ divides g, we can furthermore define
ξ ′ = g′(ξ). We have to check whether L′ = (J ′; α′, ξ ′) so defined is an element of
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K(P ). This can be done either by a direct computation or by the following argument.
Due to k′ · m′ = n, J ′ ∈ K(n). Moreover, L′ solves the system of equations (97), (98),
(101) with � being given by the Bratteli diagram (105). Thus, SU(J ) is subconjugate to
SU(J ′) by someD ∈ SU(n)with this inclusion matrix, and α′ and ξ ′ are the characteristic
classes of the extension QD

L of QL to structure group SU(J ′). Hence, L′ ∈ K(P ). We
say that L′ arises from L by a splitting of the i0th member.
Merging: Choose i1 < i2 such that mi1 = mi2 . Define J ′ = (k′,m′) and α′ by

k′ = (k1, . . . , ki1−1, ki1 + ki2 , ki1+1, . . . , k̂i2, . . . , kr
)

m′ = (m1, . . . ,mi1−1,mi1 ,mi1+1, . . . , m̂i2 , . . . ,mr
)

α′ = (α1, . . . , αi1−1, αi1αi2 , αi1+1, . . . , α̂i2 , . . . , αr
)

where ‘̂’ indicates that the entry is omitted, as well as ξ ′ = ξ . To check that
L′ = (J ′; α′, ξ ′) ∈ K(P ) we proceed analogously to the case of splitting. We say
that L′ arises from L by merging the i1th and the i2th member.

We remark that it may happen that for certain elements of K(P ) no splittings or no
mergings can be applied. Amongst these elements are, for example, those with m1 = · · · =
mr = 1 (no splitting) and those having pairwise distinct mi (no merging).

Next, we derive operations to create the direct predecessors of [L]. Direct predecessors
are necessary to construct K̂(P ) from the unique maximal element (which is given by P itself).
Note that predecessors correspond to strata of higher symmetry. Similar to the situation above,
in view of theorem 7.2, we have to go through all the diagrams (103) and (104) and find all
L′ ∈ K(P ) that obey (102) and the system of equations (97), (98), (101)—where L and L′

have to be interchanged—with L being a representative of [L] and � being given by the
corresponding diagram. Again, we can reduce this work by noting that it suffices to consider a
fixed representative L and by ignoring permutations, now of the upper vertices. The remaining
diagrams to be considered are

�

�

1

1

· · ·

· · ·

�

�

i1−1

i1−1

�

�

i1

i1

�
�������� �

i2

�

�

i1 +1

i1 +1

· · ·

· · ·

�

�

i2−1

i2−1

�

�
�
��

�

i2

i2 +1

· · ·

· · ·

�

�
�
��

�

r

r+1

(107)

�

�

1

1

· · ·

· · ·

�

�

i0−1

i0−1

�

�

i0

i0

�

�
�

��
�

i0 +1
�

�
�

��
�

i0 +2

i0 +1

· · ·

· · ·

�

�
�

��
�

r

r−1

(108)

with arbitrary i1 < i2 and i0, respectively. One can check that all necessary L′ are obtained
by the following two kinds of operations, applied to L:

Inverse splitting: Choose i1 < i2 such that ki1 = ki2 and αi1 = αi2 . Define J ′ = (k′,m′)
and α′ by

k′ = (k1, . . . , ki1−1, ki1, ki1+1, . . . , k̂i2 , . . . , kr
)

m′ = (m1, . . . ,mi1−1,mi1 +mi2 ,mi1+1, . . . , m̂i2 , . . . ,mr
)

α′ = (α1, . . . , αi1−1, αi1 , αi1+1, . . . , α̂i2 , . . . , αr
)
.
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Then g divides the greatest common divisor g′ of m′, so that g is well-defined. Choose
ξ ′ ∈ H 1(M,Zg′) such that ξ = g(ξ

′) and βg′(ξ ′) = E
(2)
m̃′ (α′). By construction,

L′ = (J ′; α′, ξ ′) is an element of K(P ). We say that it arises from L by an inverse
splitting of the i1th and the i2th members.
Inverse merging: Choose i0 such that ki0 �= 1. Choose a decomposition ki0 = ki0,1 + ki0,2
with strictly positive integers ki0,1, ki0,2. Choose cohomology elements αi0,1, αi0,2 ∈
H even(M,Z) such that α(2j)i0,l

= 0 for j > ki0,l , l = 1, 2, and αi0,1αi0,2 = αi0 . Define
J ′ = (k′,m′) and α′ by

k′ = (k1, . . . , ki0−1, ki0,1, ki0,2, ki0+1, . . . , kr
)

m′ = (m1, . . . ,mi0−1,mi0 ,mi0 ,mi0+1, . . . ,mr
)

α′ = (α1, . . . , αi0−1, αi0,1, αi0,2, αi0+1, . . . , αr
)

and ξ ′ = ξ . Again, by construction,L′ = (J ′; α′, ξ ′) ∈ K(P ). We say that L′ arises from
L by an inverse merging of the i0th member.

Let us summarize.

Theorem 7.3. Let [L] ∈ K̂(P ) and let L be a representative. The direct successors
(predecessors) of [L] are obtained by applying all possible splittings and mergings (inverse
splittings and inverse mergings) to L and passing to equivalence classes.

7.4. Examples

In this subsection, let P be a principal SU(4)-bundle.

Example 1. Direct successors of [L] for J = (1, 1|2, 2). (Recall the notation from subsection
6.3.) Note that α has components αi = 1 +α(2)i , i = 1, 2. Let us start with splitting operations.
For i0 = 1, the only possible splitting is given by the decompositionm1 = 2 = 1 + 1. It yields
L′
a = (J ′

a; α′
a, ξ

′
a), where J ′

a = (1, 1, 1|1, 1, 2), α′
a = (α1, α1, α2), and ξ ′

a = 0. The passage
from L to L′

a can very easily be performed on the level of a Bratteli diagram whose vertices
are labelled by the respective quantities ki,mi and αi (rather than by the mere number i):

�

�

L

L′
a

�

�

α1

1, 2

1, 1
α1

�

�
�

�� �

1, 1
α1

�

�
�

�� �

α2

1, 2

1, 2
α2

�

�
�

�� �

ξ

ξ ′
a = 0

.

For i0 = 2, a similar splitting operation creates L′
b, given by the labelled Bratteli diagram

�

�

L

L′
b

�

�

α1

1, 2

1, 2
α1

�

�

α2

1, 2

1, 1
α2

�

�
�

�� �

1, 1
α2

�

�
�

�� �

ξ

ξ ′
b = 0
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As for merging operations, the only choice for i1, i2 is i1 = 1, i2 = 2. This yields L′
c:

�

�

L

L′
c

�

�

α1

1, 2

2, 2
α1α2

�

�
�

���

α2

1, 2
�

�
�

���

ξ

ξ ′
c = ξ

.

Next, we have to pass to equivalence classes. Generically, L′
a, L

′
b, L

′
c generate their own

classes. However, while L′
c can never be equivalent to L′

a or L′
b, the latter are equivalent iff

α1 = α2. In order to see for which bundle classes P this can happen, consider equations (77)
and (78). The first one requires α(2)1 = α

(2)
2 to be a torsion element. Then, due to

α
(4)
1 = α

(4)
2 = 0, the second one implies c2(P ) = 0. Thus, L′

a and L′
b can be (occasionally)

equivalent only if P is trivial.

Example 2. Direct predecessors of [L] for J = (1, 1|2, 2). Inverse splittings can be applied
only if α1 = α2. In this case, for any solution ξ ∈ H 1(M,Z4) of the system of equations

ξ ′ mod 2 = ξ (109)
β4(ξ

′) = α
(2)
1 (110)

we obtain an element L′ = (J ′; α′, ξ ′), where J ′ = (1|4) and α′ = α1 = α2. The passage
from L to L′ can be summarized in the labelled Bratteli diagram

�

�

L′

L

�

�

α1

1, 4

1, 2
α1

�

�
�

�� �

1, 2
α1

�

�
�

�� �

ξ ′

ξ

that has to be read upwards. Each L′ generates its own equivalence class. Due to k1 = k2 = 1,
inverse mergings cannot be applied to L. Thus, in the case α1 = α2 the direct predecessors of
the equivalence class of L are labelled by the solutions of equations (109) and (110), whereas
in the case α1 �= α2 direct predecessors do not exist. Recall that the first case can only occur
if P is trivial.

Example 3. Direct predecessors of [L] for J = (2|2). Here α = 1 + α(2) + α(4). Inverse
mergings can be applied and yield elements L′ as follows:

�

�

L′

L

�

�

α′
1

1, 2

2, 2
α

�

�
�

���

α′
2

1, 2
�

�
�

���

ξ ′ = ξ

ξ

.

Here α′
i = 1 + α′

i
(2)
, i = 1, 2, such that α′

1α
′
2 = α. When passing to equivalence classes,

elementsL′ with (α′
1, α

′
2) and (α′

2, α
′
1) have to be identified. Since L does not allow for inverse

splittings, there are no more direct predecessors.
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8. Application

8.1. The stratification for SU (2)

In subsection 6.3 we have discussed particular examples of orbit types. In the present section
we explain how to construct the Hasse diagram of the whole set of orbit types, starting from
its maximal element. We restrict our attention to the simplest nontrivial case, the gauge group
SU(2). We start with simple examples of base manifolds, for which the orbit types are known,
and proceed to more complicated ones, such as lens spaces. This is intended to illustrate the
technique. On the other hand, the means provided in subsection 7.3 enable us to construct the
Hasse diagram for any SU(n). For SU(4), this was partially demonstrated in subsection 7.4.
However, to present full Hasse diagrams for SU(4), or any other SU(n), in a transparent way
needs some special graphical effort.

Let Lp denote the unique representative of the maximal element of K̂(P ). Since
QLp = P,Lp is given by J p = (2|1), αp = c(P ) and ξp = 0. Inverse mergings yield
elements L:

�

�

L

Lp

�

�

α1

1, 1

2, 1
c(P )

�

�
�

���

α2

1, 1
�

�
�

���

ξ = 0

ξ p = 0

where αi = 1 + α(2)i such that α1α2 = c(P ). Sorting by degree yields the equations
α
(2)
1 + α(2)2 = 0 and α(2)1 α

(2)
2 = c2(P ). We obtain α(2)2 = −α(2)1 and

−
(
α
(2)
1

)2
= c2(P ). (111)

The solutions α(2)1 and −α(2)1 yield equivalent direct predecessors. We note that the Howe
subgroup labelled by J = (1, 1|1, 1) is the toral subgroup U(1) of SU(2) and that α(2)1 is
just the first Chern class of the corresponding reduction of P. By virtue of this transliteration,
equation (111) is consistent with the literature [50].

Next, we determine the direct predecessors of the classes generated by L. Inverse mergings
cannot be applied. Inverse splittings can be applied provided α1 = α2, i.e. 2α(2)1 = 0. Then,
for any solution ξ ′ ∈ H 1(M,Z2) of the equation

β2(ξ
′) = α

(2)
1 , (112)

inverse merging yields an element L′ by

�

�

L′

L

�

�

α1

1, 2

1, 1
α1

�

�
�

�� �

1, 1
α1

�

�
�

�� �

ξ ′

ξ = 0

.

Each of these elements generates its own equivalence class. Recall that J = (1|2) labels
the centre Z2 of SU(2) and that ξ ′ is the natural characteristic class for principal Z2-bundles
over M.



R40 Topical Review

Now let us draw Hasse diagrams of K̂(P ) for base manifoldsM = S4,S2 × S2,L3
2p × S1.

In the following, vertices stand for the elements of K̂(P ) and edges indicate the relation ‘left
vertex � right vertex’. When viewing the elements of K̂(P ) as Howe subbundles, the vertex
on the rhs represents the class corresponding to P itself, the vertices in the middle and on the
lhs represent reductions of P to the Howe subgroups U(1) and Z2, respectively. When viewing
the elements of K̂(P ) as orbit types, or strata of the gauge orbit space, the vertex on the rhs
represents the generic stratum, whereas the vertices in the middle and on the lhs represent
U(1)-strata and SU(2)-strata (the names refer to the isomorphy type of the corresponding
stabilizer).

Example 1. M = S4. If c2(P ) = 0, equation (111) is trivially satisfied by α(2)1 = 0. Then
equation (112) is trivially satisfied by ξ ′ = 0. Due to H 1(M,Z2) = 0 and H 2(M,Z) = 0,
there are no more solutions for either one. Thus, in the case where P is trivial, the Hasse
diagram of K̂(P ) is

� � �

This situation was studied in detail, for instance, in [38].
If P is nontrivial, K̂(P ) is trivial, i.e. it consists only of the class corresponding to P itself.

On the level of strata, the result means that in the sector of vanishing topological charge the
gauge orbit space decomposes into the generic stratum, a U(1)-stratum, and a SU(2)-stratum.
If, on the other hand, a topological charge is present, only the generic stratum survives.

Example 2. M = S2 ×S2. Using the notation introduced in example 3 (iii) of subsection 6.3,
equation (111) becomes −2ab γ (2)S2 × γ

(2)
S2 = c2(P ). The discussion is similar to that of

equation (86). Due to H 1(M,Z2) = 0, only the solution a = b = 0 has a direct predecessor
itself. Thus, in the case c2(P ) = 0 the Hasse diagram of K̂(P ) is

�

�
�
�
�
�
�
�
�
�

�
�
�

�
�����

(2, 0)

� 					

(1, 0)

�
(0, 0)

� 





(0, 1)

� �����

(0, 2)

�
�
� �

�
�
�
�
�
�
�
�

� .

The vertices in the middle are labelled by the corresponding values of (a, b). Note that passage
to equivalence classes requires identification of solutions (a, b) and (−a,−b). In the case
c2(P ) = 2lγ (2)S2 ×γ (2)S2 , the Hasse diagram is

�
�����

(1,−l)
� � � � � � � � �

�
�
�

�(q,−l/q)

�
�
�
� � � � � � � � �

� �����

(l,−1)

�

where, due to the identification (a, b) ∼ (−a,−b), q runs through the positive divisors of l
only. Finally, in the case c2(P ) = (2l + 1)γ (2)S2 × γ

(2)
S2 , K̂(P ) is trivial.

The interpretation of the result in terms of strata of the gauge orbit space is similar to that
for spacetime manifoldM = S4 above.
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Example 3. M = L3
2p × S1. Recall the notation from subsection 6.3. We write

α
(2)
1 = aγ

(2)
L3

2p;Z
× 1S1 . (113)

Due to H 2
(
L3

2p,Z
)∼= Z2p,

(
α
(2)
1

)2 = 0. Hence, equation (111) is solvable iff c2(P ) = 0, in
which case the solutions are given by a ∈ Z2p. Since when passing to equivalence classes we
have to identify solutions a and −a, the direct predecessors are labelled by elements of Zp.

Next, decomposing ξ ′ = ξ ′
Lγ

(1)
L3

2p;Z2
×1S1 + ξ ′

S1L3
2p;Z2

×γ (1)S1 and using (79), equation (112)

becomes pξ ′
L = a. Thus, only the elements labelled by a = 0 and a = p have direct

predecessors. These are given by the values ξ ′
L = 0, ξ ′

S = 0, 1 and ξ ′
L = 1, ξ ′

S = 0, 1,
respectively. As a result, in the case c2(P ) = 0, the Hasse diagram of K̂(P ) is

�(0, 0)

� 





(0, 1)

� 					
(1, 0)

�(1, 1)

�
�����

0

� 					
1

�
�
�
� � � � � � � � �

� 





p − 1

� �����

p

�

Here the vertices on the lhs are labelled by (ξ ′
L, ξ

′
S), whereas those in the middle are labelled

by a. In the case c2(P ) �= 0, K̂(P ) is trivial. Again, the interpretation in terms of strata of the
gauge orbit space goes along the lines of example 1 above.

8.2. Kinematical quantum nodes in Yang–Mills–Chern–Simons theory

Following [7], we consider gauge theory on the trivial bundle P̃ = (� × R)× SU(n), where
� is a Riemann surface, in the Hamiltonian approach. The action functional consists of the
Yang–Mills and the Chern–Simons term,

S(Ã) = 1

2

∫
�×R

tr(F̃ Ã ∧ ∗F̃ Ã) +
λ

8π

∫
�×R

tr

(
Ã ∧ F̃ Ã − 2

3
Ã ∧ Ã ∧ Ã

)
where Ã ∈ C̃, the space of Wk-connections in P̃ , and F̃Ã denotes the curvature of Ã. The
coupling λ takes integer values. By separating the time variable, we get the following
Lagrangian

L(A,A0, Ȧ, Ȧ0) = 1

2
(Ȧ−∇AA0, Ȧ−∇AA0)0 − 1

2
(FA, FA)0 +

λ

4π
{2(A0, ∗FA)0 + (A, ∗Ȧ)0}.

Here, A0 ∈ Wk(M, su(n)), A is a Wk-connection form in the trivial bundle P = � × SU(n)
and (·, ·)0 denotes the L2-scalar product of su(n)-valued forms on M. As usual, we denote the
space of Wk-connections in P by C. Constraint analysis yields the Gauß law

∇∗
A�− λ

4π
∗ dA = 0

where� denotes the momentum conjugate to A. Performing canonical quantization one finds
that physical states are given by functions ψ : C → C that are contained in the kernel of the
Gauß law operator

∇∗
Â

δ

δA
− iλ

4π
∗ dÂ (114)
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where Â means the multiplication operator, i.e. (Âψ)(A′) = A′ψ(A′),∀A′ ∈ C. On the
physical states, the Hamiltonian is given by

H = −1

2

(
δ

δA
+ i

λ

4π
∗ A, δ

δA
+ i

λ

4π
∗ A
)

0

+
1

2
(FA, FA)0.

Let us consider connectionsA ∈ C that can be reduced to some subbundle of P with nontrivial
first Chern class. That is, in the language of physics, A carries a nontrivial magnetic charge.
Thus, it may be viewed as monopole-like, although it is not assumed to be a solution of the
field equations. In [4] it was shown that if the Chern–Simons term is present, i.e. λ �= 0, then
ψ(A) = 0 for any such A and any physical state ψ . Therefore, such A are called kinematical
quantum nodes. Note that for geometric reasons there also exist dynamical nodes which differ
from state to state. Due to their monopole-like character, kinematical quantum nodes are
expected to play a role in the confinement mechanism. In the following we shall show that
being a node is a property of strata. For that purpose, we reformulate the result of [4] in our
language.

Theorem 8.1. Let A ∈ C have orbit type [(J ; α, ξ)] ∈ K̂(P ). If α(2)i �= 0 for some i then A is
a kinematical quantum node, i.e. ψ(A) = 0 for all physical states ψ .

We outline the proof, following [4]. Let L = (J ; α, ξ). Since � is a compact orientable
2-manifold, H 2(�,Z) = Z. Let γ (2) be a generator. Then α(2)i = ciγ

(2) for certain ci ∈ Z.
Consider the following element of u(n):

φ̃ := i

[(
c1

k1
1k1 ⊗ 1m1

)
⊕ · · · ⊕

(
cr

kr
1kr ⊗ 1mr

)]
.

Due to (α, ξ) ∈ K(P, J ), (m1c1 + · · · + mrcr)γ (2) = E
(2)
m (α) = 0. It follows tr(φ̃) = 0,

hence φ̃ ∈ su(n). By construction, φ̃ is invariant under the adjoint action of the subgroup
SU(J ) ⊆ SU(n). Thus, we can define an equivariant function φ : P → su(n) by assigning to
any q ∈QL the constant value φ̃ and extending equivariantly to P. By construction, ∇Aφ = 0.
Consequently, for any state ψ : C → C,(

φ,

(
∇∗
Â

δ

δA
ψ

)
(A)

)
0

=
(
φ,∇∗

A

{(
δ

δA
ψ

)
(A)

})
0

= 0.

For physical states, the Gauss law implies

(φ, (∗dÂψ)(A))0 = (φ, ∗dA)0ψ(A) = 0. (115)

Using ∇Aφ = 0 and the structure equation FA = dA + 1
2 [A,A], we obtain

(φ, ∗dA)0ψ(A) = 2(φ, ∗FA)0ψ(A). (116)

Since A is reducible to QL (recall that QL contains a holonomy bundle of A), FA has block
structure ((FA)1 ⊗ 1m1)⊕ · · · ⊕ ((FA)r ⊗ 1mr ) with (FA)j being (kj × kj )-matrices. Thus, by
construction of φ,

(φ, ∗FA)0 =
∫
�

Tr(φFA) = i
r∑
j=1

mj

kj
cj

∫
�

Tr((FA)j ). (117)

Since cj are the first Chern classes of the Whitney factors of the extension of QL to structure
group U(J )∼= U(k1) × · · · × U(kr), the integrals on the rhs give −2π icj . Thus, equations
(115)–(117) imply

r∑
j=1

mj

kj
c2
jψ(A) = 0. (118)

It follows that if one of the cj is nonzero then ψ(A) = 0, for all physical states ψ .
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Remark. Let us compare (118) with formula (6) in [4]. Define k′
i = kimi and m′

i = 1. Then
J ′ = (k′,m′) ∈ K(n) and U(J ) ⊆ U(J ′). Let Q′

L denote the extension of QL to structure
group U(J ′). It is not hard to see that the Whitney factors of this subbundle have first Chern
classes c′

i = mici . Inserting k′
i , m

′
i , and c′

i into (118) one obtains formula (6) in [4]. In fact,
the authors of [4] use that A is reducible to Q′

L, rather than that it is even reducible to QL.

As a consequence of theorem 8.1, the property of being a kinematical node is actually a
property of strata. It can be read off directly from the labels L ∈ K(P ). As an example, we
present the Hasse diagram of K̂(P ) for SU(2) (which can be derived analogously to the four-
dimensional case explained in subsection 8.1), with the nodal strata marked by an additional
circle:

�
�����

(0, . . . , 0)

� � � � � � � � �
�
�
�

�(1, . . . , 1)

�
�
�
�
�
�
�
�
�

�
�
�

�
�����

2

� 					
1

�

0

�

�

�

The U(1)-strata are labelled by the moduli of the first Chern classes of the correspondingQL.
The Z2-strata are labelled by elements of Z

2s
2 , where s is the genus of �. Thus, all but one

U1-strata are kinematical nodes. The non-nodal stratum is that with zero topological charge.
It is the only one which itself has singularities, where the singularities are all non-nodal.

9. Outlook

In the present review we have given a survey on the stratified structure of the gauge orbit
space. Based on the results presented, a lot of points deserve a detailed study, for example

• the topology of strata, in particular w.r.t. potential anomalies [44],
• the geometric properties of strata w.r.t. the L2-metric, in particular in the vicinity of

singularities,
• the study of other metrics, like the strong metrics γ k or ηk, defined in subsection 2 or the

(potentially degenerate) information metric [37, 41].

From the viewpoint of physics, however, the most important question related to the
stratified structure of the gauge orbit space is: what is the physical relevance of the nongeneric
strata, i.e. what physical effects do they produce? To study this question systematically, one
needs a quantization in which all strata are included on an equal footing and in which the
stratification is explicitly encoded. To achieve this, we propose to view the gauge theory as
an infinite-dimensional Hamiltonian system with symmetry and to work out the following
programme:

1. Try to carry over the procedure of singular Marsden–Weinstein reduction, established in
finite dimensions by Sjamaar and Lerman [72], to the infinite-dimensional Hamiltonian
system under consideration (for an exposition of the method see [24, appendix B5] or
[56, section IV.1.11]). Singular Marsden–Weinstein reduction equips the reduced phase
space with the structure of a stratified symplectic space (‘singular Marsden–Weinstein
quotient’). A stratified symplectic space is a Poisson space X together with a stratification
X = ∪iXi (of some given type) into symplectic manifolds Xi such that the embeddings
Xi → X are Poisson space morphisms.
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2. Develop a geometric quantization of the reduced phase space so obtained. The
generalization of methods of geometric quantization to stratified symplectic spaces is
a field of active research. Besides the discussion of specific examples, until now the
following notions have been established in finite dimensions:

• prequantization of Poisson spaces [48] (applies to X),
• prequantization of symplectic manifolds (standard, applies to the Xi),
• polarization of stratified symplectic spaces [49].

Thus, to realize the concept of geometric quantization of a stratified symplectic space, the
first problem to be solved consists in clarifying the relation between the prequantization of
the Poisson space X and the prequantizations of its symplectic strata Xi . Next, using the
above-mentioned polarization concept, one can try to construct the full quantum theory. Then,
it is still a big challenge to extend these methods to the infinite-dimensional case.
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Appendix A. Some basic facts from bundle theory

Classifying spaces and classifying maps. Let G be a Lie group. A principal G-bundleE → B

is called universal forG, iff E is contractible. It can be shown that, for any Lie groupG, there
exists a universal bundle

G ↪→ EG
πG→ BG

with the following property: For any CW-complex (hence, in particular, any manifold) X the
assignment

[X,BG] −→ Bun(X,G) f 
→ f ∗EG (A.1)

is a bijection. Here, [·, ·] denotes the set of homotopy classes of maps, Bun(X,G) is the
set of isomorphism classes of principal G-bundles over X (where bundle morphisms are
assumed to project to the identical mapping on X) and f ∗ denotes the pull-back of bundles:
f ∗EG = {(x, ε) ∈ X × EG : f (x) = πG(ε)}. BG is called the classifying space of G and
the homotopy class of maps X → BG associated with P ∈ Bun(X,G) by virtue of (A.1) is
called the classifying map of P. In this appendix, we will denote it by fP . Since the total space
of EG is contractible, the exact homotopy sequence of fibre spaces implies

πi(G)∼=πi+1(BG) i = 0, 1, 2, . . . . (A.2)

Associated principal bundles defined by homomorphisms. Let ϕ : G → G′ be a Lie group
homomorphism and let P ∈ Bun(X,G). By virtue of the action

G′ ×G → G′ (a′, a) 
→ ϕ(a−1)a′

G′ becomes a right G-space and we have an associated bundle P ×G G
′. To indicate that

this bundle is completely given by ϕ, we denote it by P [ϕ]. By setting [(p, a′)] · b′ :=
[(p, a′b′)],∀p ∈ P, a′, b′ ∈ G′, a rightG′-action on P [ϕ] is defined, thus making it a principal
G′-bundle over X.
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In the main text of the review, two special cases of associated principal bundles occur:

(i) ϕ is a Lie subgroup embedding. Here P [ϕ] represents the extension of P to structure
groupG′.

(ii) ϕ is factorization by a normal Lie subgroup N. Here P [ϕ] represents the quotient bundle
P/N .

Thus, the construction of associated principal bundle provides a unifying viewpoint on the
operations of extending the structure group and factorizing by a normal subgroup. In particular,
it allows to determine the classifying map of both extensions and quotients. Namely, one has

fP [ϕ] = Bϕ ◦ fP (A.3)

where Bϕ : BG → BG′ is the map of classifying spaces associated with ϕ. It is defined as the
classifying map of the associated principalG′-bundle (EG)[ϕ]. Note the following (covariant)
functorial property: For ϕ : G → G′ and ϕ′ : G′ → G′′ there holds

B(ψ ◦ ϕ) = Bψ ◦ Bϕ.

Appendix B. Eilenberg–MacLane spaces and Postnikov tower

Eilenberg–MacLane spaces. Let π be a group and n a positive integer. An arcwise connected
CW-complex X is called an Eilenberg–MacLane space of type K(π, n) iff πn(X) = π and
πi(X) = 0 for i �= n. Eilenberg–MacLane spaces exist for any choice of π and n, provided π
is commutative for n � 2. They are unique up to homotopy equivalence.

The simplest example of an Eilenberg–MacLane space is the 1-sphere S1, which is of type
K(Z, 1). Two further examples, K(Z, 2) and K(Zg, 1), are briefly discussed in appendix C.
Apart from very special examples, Eilenberg–MacLane spaces are infinite dimensional. Up
to homotopy equivalence one has

K(π1 × π2, n) = K(π1, n)×K(π2, n).

Now assume π to be commutative also in the case n = 1. Due to the Hurewicz and
the universal coefficient theorems, Hn(K(π, n), π) = Hom (Hn(K(π, n)), π). Moreover,
Hn(K(π, n))∼=πn(K(π, n)) = π . It follows that Hn(K(π, n), π) contains elements which
correspond to isomorphisms Hn(K(π, n)) → π . Such elements are called characteristic. If
γ ∈ Hn(K(π, n), π) is characteristic then for any CW-complex X, the map

[X,K(π, n)] → Hn(X, π) f 
→ f ∗γ (B.1)

is a bijection [20, section VII.12]. In this sense, Eilenberg–MacLane spaces provide a link
between homotopy properties and cohomology.

Next, consider the path-loop fibration overK(π, n),

�(K(π, n)) ↪→ P(K(π, n)) −→ K(π, n)

where �(K(π, n)) and P(K(π, n)) denote the loop space and the path space of K(π, n),
respectively (both based at some point x0). Since P(K(π, n)) is contractible, the exact
homotopy sequence induced by the path-loop fibration implies πi (�(K(π, n + 1))) =
πi+1 (K(π, n + 1)) Hence, �(K(π, n + 1)) = K(π, n),∀n, and the path-loop fibration over
K(π, n + 1) reads

K(π, n) ↪→ P(K(π, n + 1)) −→ K(π, n + 1). (B.2)

Postnikov tower. A map f : X → X′ of topological spaces is called an n-equivalence iff the
homomorphism induced on homotopy groups f∗ : πi(X) → πi(X

′) is an isomorphism for
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i < n and surjective for i = n. One also defines the notion of an ∞-equivalence, which is
often called weak homotopy equivalence.

Let f : X → X′ be an n-equivalence and let Y be a CW-complex. Then the map
[Y,X] → [Y,X′], g 
→ f ◦ g, is bijective for dimY < n and surjective for dimY = n [20,
chapter VII, corollary 11.13].

A CW-complex Y is called n-simple iff it is arcwise connected and the action of π1(Y ) on
πi(Y ) is trivial for 1 � i � n. It is called simple iff it is n-simple for all n.

The following theorem describes how a simple CW-complex can be approximated by
n-equivalent spaces constructed from Eilenberg–MacLane spaces.

Theorem B.1. Let Y be a simple CW-complex. There exist

(i) a sequence of CW-complexes Yn and principal fibrations

K(πn(Y ), n) ↪→ Yn+1
qn−→ Yn n = 1, 2, 3, . . .

given as the pull-back of the path-loop fibration (B.2) overK(πn(Y ), n + 1) by some map
θn : Yn → K (πn(Y ), n + 1),

(ii) a sequence of n-equivalences yn : Y → Yn, n = 1, 2, 3, . . .,

such that Y1 = ∗ (one point space) and qn ◦ yn+1 = yn for all n.

The sequence of spaces and maps (Yn, yn, qn), n = 1, 2, 3, . . . , is called a Postnikov
tower (or Postnikov decomposition) of Y.

We remark that the theorem follows from a more general theorem about simple maps
[20, chapter VII, theorem 13.7] by noting that the assumption that Y is a simple CW-complex
implies that the constant map Y → ∗ is a simple map. See [20, chapter VII, definition 13.4]
for a definition of the latter.

Appendix C. Construction of BSU(J)5

In this appendix, let J ∈ K(n) and consider the classifying space BSU(J ) of the Howe
subgroup SU(J ). We are going to prove that BSU(J )5, i.e. the fifth stage of the Postnikov
tower of BSU(J ), is given by formula (59).

Preparation. First, in order to be able to apply theorem B.1, we have to check that
BSU(J ) is a simple space. To see this, note that any inner automorphism of SU(J ) is
generated by an element of SU(J )0, hence is homotopic to the identity automorphism.
Consequently, the natural action of π0(SU(J )) on πi−1(SU(J )), i = 1, 2, 3, . . . , induced by
inner automorphisms, is trivial. Since the natural isomorphisms πi−1(SU(J ))∼=πi(BSU(J ))
transform this action into that of π1(BSU(J )) on πi(BSU(J )), the latter is trivial, too. Thus,
BSU(J ) is a simple space, as asserted.

Second, we note the relevant homotopy groups of BSU(J ). According to (58) and (A.2),
these are

π1 = Zg π2 = Z
⊕(r−1) π3 = 0 π4 = Z

⊕r∗
(C.1)

where r∗ denotes the number of ki > 1.
Third, we will need information about the integer-valued cohomology groups of the

Eilenberg–MacLane spaces K(Zg, 1) and K(Z, 2).

(i) K(Z, 2): Consider the natural free action of U(1) on the sphere S∞ (induced from U(1)-
action on S2n−1 ⊆ C

n). The orbit space of this action is known as the infinite-dimensional
complex projective space CP∞. Due to πi(S∞) = 0, the exact homotopy sequence of the
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principal bundle U(1) ↪→ S∞ → CP∞ implies πi(CP∞) = πi−1(U(1)) = Z, for i = 2
and 0 otherwise. Thus, CP∞ is a model for K(Z, 2). It follows, see [20, chapter VI,
proposition 10.2],

Hi(K(Z, 2),Z) =
{

Z | i even
0 | i odd.

(C.2)

(ii) K(Zg, 1): Consider the restriction of the above action to the subgroup Zg ⊆ U(1). The
resulting orbit space is the infinite-dimensional lens space L∞

g . The exact homotopy
sequence of the corresponding principal bundle implies πi

(
L∞
g

) = πi−1(Zg) = Zg,

for i = 1 and 0 otherwise. Hence, L∞
g is a model for K(Zg, 1). Consequently, see [34,

section 24, p 176],

Hi(K(Zg, 1),Z) =


Z | i = 0
Zg | i �= 0, even
0 | i �= 0, odd.

(C.3)

(Note that the vanishing of all homotopy groups of S∞ also implies that CP∞ and L∞
g are

models for the classifying spaces BU(1) and BZg , respectively.)

Construction. We start with BSU(J )1 = ∗. Then BSU(J )2 must coincide with the fibre which
is K(Zg, 1), see (C.1). Next, according to (C.1), BSU(J )3 is the total space of a fibration

K
(
Z

⊕(r−1), 2
)
↪→ BSU(J )3

q2−→ K(Zg, 1) (C.4)

given by the pull-back of the path-loop fibration over K(Z⊕(r−1), 3) by some map θ2 :
K(Zg, 1) → K(Z⊕(r−1), 3). Since K(Z⊕(r−1), n) = ∏r−1

j=1 K(Z, n),∀n, (B.1) yields for
the set of homotopy classes[

K(Zg, 1),K
(
Z

⊕(r−1), 3
)] =

r−1∏
i=1

H 3(K(Zg, 1),Z).

Due to (C.3), the rhs is trivial. Hence, θ2 is homotopic to a constant map, so that the fibration
(C.4) is trivial. Thus

BSU(J )3 = K(Zg, 1)×
r−1∏
j=1

K(Z, 2).

Then, in view of (C.1), BSU(J )4 is given by a fibration over BSU(J )3 with fibreK(0, 3) = ∗.
Hence, it just coincides with the base space. Finally, BSU(J )5 is the total space of a fibration

K(Z⊕r∗
, 4) ↪→ BSU(J )5

q4−→ K(Zg, 1)×
r−1∏
j=1

K(Z, 2) (C.5)

which is induced by a map θ4 from the base to K(Z⊕r∗
, 5). We haveK(Zg, 1)×

r−1∏
j=1

K(Z, 2),K(Z⊕r∗
, 5)

 =
r∗∏
i=1

H 5

K(Zg, 1)×
r−1∏
j=1

K(Z, 2),Z

 .
Since H ∗(K(Z, 2),Z) is torsion-free, see (C.2), we can apply the Künneth theorem for
cohomology to obtain

H 5

K(Zg, 1)×
r−1∏
j=1

K(Z, 2),Z


∼=
⊕

Hj(K(Zg, 1),Z)⊗Hj1(K(Z, 2),Z)⊗ · · · ⊗Hjr−1(K(Z, 2),Z)
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with the direct sum running over all decompositions of 5 into a sum of r nonnegative integers
j, j1, . . . , jr−1. Each summand of the rhs is trivial, because it contains tensor factors of odd
degree, which are trivial due to (C.2) and (C.3). Hence, θ4 is again homotopic, a constant map
and the fibration (C.5) is trivial. This proves formula (59), used in the main text.
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[43] Heil A, Kersch A, Papadopoulos N A, Reifenhäuser B and Scheck F 1990 Structure of the space of reducible

connections for Yang–Mills theories J. Geom. Phys. 7 489–505
[44] Heil A, Kersch A, Papadopoulos N A, Reifenhäuser B and Scheck F 1990 Anomalies from nonfree action of

the gauge group Ann. Phys. 200 206–15
[45] Howe R 1979 θ -series and invariant theory Automorphic Forms, Representations, and L-functions, Proc. Symp.

Pure Math. 33 pp 275–85
[46] Howe R 1985 Dual pairs in physics: harmonic oscillators, photons, electrons and singletons Lect. Appl. Math.

vol 21 (Providence, RI: American Mathematical Society) pp 179–207
[47] Howe R 1989 Transcending classical invariant theory J. Am. Math. Soc. 2 535–52
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